
John N. Dyer

65

Categorizing Efficient XML Compression Schemes

John N. Dyer, Department of Information Systems,
College of Business Administration, Georgia Southern University,
P.O. Box 7998, Statesboro, GA 30459

Abstract

Web services are Extensible Markup Language (XML) applications mapped
to programs, objects, databases, and comprehensive business functions. In
essence, Web services transform XML documents into and out of information
technology systems. As more businesses turn to web services data transfer,
XML has become the language of web services. Unfortunately, the structure
of XML results in extremely verbose documents, often 3 times larger than
ordinary content files. As XML becomes more common through Web
services applications, its large file sizes increasingly burden the systems that
must utilize it. This paper provides a qualitative overview of existing and
proposed schemes for efficient XML compression, proposes three categories
for relating XML compression scheme efficiency for Web services, and
makes recommendations relating to efficient XML compression based on the
proposed categories of XML documents. The goal of this paper is to aid the
practitioner and Web services manager in understanding the impact of XML
document size on Web services, and to aid them in selecting the most
appropriate schemes for applications of XML compression for Web services.

Keywords: Compression, Web services, XML

Introduction

XML is the foundation upon which Web services are built, and provides the
description of data, as well as the storage and transmission format of data
exchanged via Web services (Newcomer, 2002). XML is similar to
Hypertext Markup Language (HTML), and well-formed XML documents
can even be displayed in Web browsers. XML is gaining much acceptance
by e-business and other web dependent enterprises as a method of data
exchange, data sorting, and data archiving across different software
applications and platforms. XML provides a home for many "niche"
application areas that do not fit into the standard HTML data model (Cheney,
2001). If you go to any of several web sites exploring XML, you will

Journal of Business, Industry and Economics
Volume 18, Spring 2013

66

probably run across an exhaustive list of such applications, including e-
business transactions, medical information, and user interface descriptions.

XML is also gaining momentum in many areas of the computer industry; for
example, Microsoft has announced plans to base future software systems on
XML (Bosworth, 1998). Additionally, Microsoft's XML online demo
provided an early demo of how XML might eventually be implemented
(Walsh, 1998). The demo profiles an art auction whereby all of the artwork,
bids, and descriptions are downloaded and reside on the client. The server is
then pinged by the client to see if any bids have been updated or if the end-
user submits a bid for a specific picture. Concerning the popularity of XML,
Bosak and Bray (1999) relate that XML is the ``next big thing'' after HTML.

The required structure of an XML document, including required tags,
symbols, and attributes (all text), as well as the abundance of redundant data
and white spaces, bloats the file size and hence impacts document processing
and web transmission speeds. Walsh (1998) relates that Web designers are
concerned with how users will react to additional XML data being sent over
the Internet, while Tim Sloan (analyst at Aberdeen Group in Boston) related
that there is the risk that XML will become overused, hence creating an
overhead that is not valuable to the end-user. Walsh further stated, “given
the current standards based on XML, there may also be a need to either
heighten the compression in HTTP or add a new compression layer to
address XML data.” Dodds (2000) related that he discovered that designer’s
concerns over XML file size was behind several contentious design decisions
and suggested that, based on XML structure, XML documents were a prime
candidate for compression.

In spite of the growing popularity and use of XML, its greatest disadvantage
is document size. XML's parent standard, Standardized General Markup
Language (SGML), made many provisions for minimizing document size.
As a result, SGML was rendered complex and difficult to implement, hence
the provisions were omitted from XML. As evidence, the XML standard
explicitly states that markup terseness “was not a design goal.”
Consequently, XML is not a particularly efficient format for representing
information since it is a text-based, human-readable, and metadata-encoded
markup language that operates on the principle that the metadata that
describes a message's meaning and context accompanies the content of the
message.

Schmelzer (2002) related that XML document sizes can easily be ten to
twenty times larger than an equivalent binary representation of the same

John N. Dyer

67

information, and most articles and studies (Bromberg, 2001, Mertz, 2001,
2003) related to XML document size estimate size to be at least three times
larger than an ordinary text document. Regardless of the exact numbers, the
point is that XML documents can be many times larger than equivalent non-
standardized text or binary formats, even if compressed. Even though it is
inefficient, XML's numerous advantages are increasing its use for ever
broader and more mission-critical functions.

There is growing concern in the XML community, particularly for Web
services applications, that inefficiency arising from document size will
hinder adoption and use of XML, as well as Web services technologies.
While XML's verbosity may be acceptable for situations with moderate
transaction volumes, XML's processing overhead, storage requirement, and
bandwidth consumption becomes quite problematic when transaction
volumes are high. As a result, many companies are resorting to potentially
dangerous tactics for squeezing every last drop of performance out of XML.
Three common tactics include compressing XML, ignoring XML validity,
and changing the parsing rules for XML (Schmelzer, 2002).

XML compression addresses some of the problems of Web services via
XML by reducing the size of XML documents transferred between a server
and client, thereby conserving bandwidth and reducing user perceived
latency. Although there is a wide variety of potential hardware/software
solutions to remedy XML’s performance problems, many developers and
researchers are resorting to a variety of tactics to improve the performance of
XML processing and transmission. Many of these approaches simplify
certain aspects of XML to reduce document size via compression, improve
parser performance, and speed the mapping of XML document components
to application objects (Schmelzer, 2002).

The current body of literature is quite sparse in regards to efficient XML
compression. This paper provides an overview of existing and proposed
schemes for compression of XML documents, proposes three categories for
relating XML compression scheme efficiency (based on specific metrics),
and makes recommendations relating to efficient XML compression based
on the proposed categories of XML documents. The following sections
more fully define XML, processing XML documents, consider related
compression problems, introduce the basic concept of data compression,
provide an overview of the traditional algorithms for XML compression as
well as XML-conscious compression schemes, categorize compression
schemes based on three proposed categories of XML documents, introduce
recently proposed compression schemes, and make recommendations as

Journal of Business, Industry and Economics
Volume 18, Spring 2013

68

related above. The goal of this paper is to aid the practitioner and Web
services manager in understanding the impact of XML document size on
Web services, and to aid them in selecting the most appropriate schemes for
applications of XML compression for Web services.

XML Defined

XML is a language for semi-structured data standardized by the World Wide
Web Consortium (W3C), which has most likely become the de facto
standard for web documents (Cannataro et al., 2001). XML is considered an
"up-and-coming" standard for structured data files, drawing on considerable
existing experience with HTML/CSS, but being much more general
(Cheney, 2001). It is not a specific markup language like HTML, but instead
is a meta-language for describing markup languages (like HTML) together
with a strong standard for creating and parsing documents. XML allows
building machine-readable documents that are naturally convertible in
visualization formats; this is obtained by means of a complete separation
among structure, content and style of documents (Cannataro et al., 2001).
More specifically, XML is a standardized language that “describes a class of
data objects called XML documents and partially describes the behavior of
computer programs which process them” (W3C, 1998).

Superficially, XML documents looks a lot like HTML documents. XML
provides the description, storage, and transmission format for data
exchanged via Web services. It allows user-defined elements and attributes
that independently define type and structure information for the data they
carry, including the capability to model data and structure that are specific to
a given software domain. The XML syntax specifies how data is generically
represented, defines how and with what qualities of service the data is
transmitted, and details how the services are published and discovered
(Newcomer, 2002).

XML independently stores data values within descriptive element tags that
are enclosed in angle brackets (< >) and have a start and an end. The end is
marked with a slash (/). Elements can have one or more attributes associated
with the element name, using a name/value pair for each attribute. XML
documents must be well formed, resulting in XML being more restrictive
than HTML. Specifically, elements must be nested, start tags must match
corresponding end tags, and attribute names within start tags must be unique,
among other things. XML documents can also include a document type
definition (DTD). Validation, or checking that an XML document follows
the rules of a DTD, ensures that only meaningful data reaches an application.

John N. Dyer

69

An XML schema (also an XML document) can be used to define validation,
data typing, and document structure of the original XML document. Schemas
separately define the types, structure, and semantic meaning to be applied to
the data contained within the element tags. In essence, the schema is used to
transform data into and out of XML format. XML schemas were developed
to resolve some of the limitations and problems with DTDs, which
themselves were developed to express a content model for XML documents,
defining valid elements, attributes, and some ordering constraints. Although
schemas can replace DTDs, validation of content is still often done via
DTDs, especially when existing XML documents are transmitted via Web
services. The interested reader is referred to other sources (Newcomer,
2002) for detailed information about XML, schemas, DTDs, parsing,
processing, and transforming XML documents.

Processing XML Documents

Document Object Model (DOM) and Simple API for XML (SAX), both
APIs, are models and programming libraries for parsing XML documents,
either by creating an entire tree to be traversed or by reading and responding
to XML elements one-by-one (Newcomer, 2002). Simply stated, DOM and
SAX facilitate the parsing of XML documents.

The DOM API provides a generic object model to represent the structure of
documents and a standard set of interfaces for traversing and manipulating
the document. Most DOM implementations work in main memory, hence
the DOM API allows multiple passes through the document. In essence, the
DOM API treats the document as a memory-resident database that can be
searched multiple times. With DOM, the parser itself does almost
everything, including reading the XML document, creating a Java object
model, converting textual XML information into a tree of nodes, and
providing a reference to the Document object (Halloway, 2000). The DOM
API is recommended if an XML document is a continuing source of data or
is a document that will experience repeated interaction.

SAX is a standard interface for event-based XML parsing, designed to give
programmers access to the information stored in XML documents using any
programming language and corresponding parser (Megginson, 2000). SAX
is currently one of the most popular APIs for manipulating XML documents.
SAX (similar to the DOM) is designed specifically to allow programmers to
access XML information without having to write a parser in their own
particular programming language. When storing information in XML
format, and using the SAX API, a program is free to use any parser it wishes.

Journal of Business, Industry and Economics
Volume 18, Spring 2013

70

This is possible because parser writers implement the SAX API using their
preferred programming language. SAX (and DOM) APIs are both available
for multiple languages (Java, Perl, C++, Python, etc.) (Megginson, 2000).

The SAX API works by firing callback events into the application as the
document is parsed, element-by-element (Newcomer, 2002). The SAX
approach uses less memory and is more efficient for messaging and
transformation. The SAX approach is recommended if document parsing for
only one reason, such as to map the XML document to a software program
or database.

SAX can run much faster relative to DOM, for simple object models. In such
cases, SAX is faster because it does not create a tree-based object model of
the information (Armstrong, 2000). This speed advantage is counter-
balanced by the need to write a document handler to interpret all the SAX
events generated by the parser (Armstrong, 2000). The appropriateness of
SAX depends largely on the nature of the underlying XML data.

XML parsers convert XML tags into nodes in different ways. The SAX
parser forms elements one at a time, forgetting about a node once it is
completed. The DOM parser builds a tree that stores information about the
structure over time (Cagle, 2000). The SAX parser converts a tag into a
node, but it does not keep the node in the memory once the node is finished,
so the SAX parser requires very little memory and processor time to process
content. However, the parser only knows about the current node, and its
younger siblings or children, so it's essentially forward-read only (Cagle,
2000). DOM on the other hand, parses a node and stores it in a structural
tree, so that the entire data structure is available while processing any node.
This allows more complex processing, but requires keeping the entire
structure in memory, which can be impractical for XML documents with
thousands of nodes (Cagle, 2000).

The fact that SAX allows a programmer to define a custom document model
means the programmer can decide to discard information that will not be
needed later. This can result in reduced memory overhead, which is
typically very high with DOM (a 100 megabyte XML file can take over 1
gigabyte of memory just to read the data into a libxml DOM tree (Veillard,
2000)). In summary, SAX is an event-based API, suitable for one-pass
algorithms such as search tools and filters. DOM provides an interface to
XML data stored in memory as trees, and is better suited to multi-pass
algorithms.

John N. Dyer

71

Common Compression Schemes

There are three major approaches to lossless text compression: (1)
Dictionary-based, (2) Block sorting-based, and (3) Symbol probability
prediction-based (King, 2003). A Lossless data compression algorithm is
one that, on decompression, can recreate the original data, bit-for-bit
(Whatis.com, 2001). Most file compression schemes are based on dictionary
algorithms of previously occurring phrases. These algorithms compress by
substituting distance to the last occurrence and the length of the phrase.
These algorithms are very fast, provide moderate compression ratios, and use
only modest memory requirements. Block sorting-based algorithms perform
block-sorting transforms wherein letters are grouped together, while the text
remains the same size. The resulting transformed document is then
compressed with a fast and simple coding technique that results in high
compression ratios and moderate memory requirements. Probability based-
prediction algorithms calculate the probability distribution for every symbol
and then optimally encode them. These algorithms are typically slow and
quite memory intensive.

Although there are many different lossless compression algorithms available
for file compression, most are variations of two popular schemes: Huffman
encoding and the Lempel-Ziv algorithm. Huffman encoding is a probability
based-prediction algorithm, while Lempel-Ziv is a dictionary-based
algorithm.

Huffman encoding works by assigning a binary code to each of the symbols
(characters) in an input stream (file). This is accomplished by first building a
binary tree of symbols based on their frequency of occurrence in a file. The
assignment of binary codes to symbols is done in such a way that the most
frequently occurring symbols are assigned the shortest binary codes and the
least frequently occurring symbols assigned the longest codes. This in turn
creates a smaller compressed file (Goebel, 2001).

 The Lempel–Ziv algorithm, also known as LZ-77, exploits the redundant
nature of data to provide compression. The algorithm utilizes what is referred
to as a sliding window to keep track of the last n bytes of data seen. Each
time a phrase is encountered that exists in the sliding window buffer, it is
replaced with a pointer to the starting position of the previously occurring
phrase in the sliding window along with the length of the phrase (Goebel,
2001).

Journal of Business, Industry and Economics
Volume 18, Spring 2013

72

The primary metric for data compression algorithms is the compression ratio,
which refers to the ratio of the size of the original data to the size of the
compressed data (Gzip, 2001). For example, if we had a 100-kilobyte file
and were able to compress it down to only 20 kilobytes we would say the
compression ratio is 5-to-1, or 80%. The contents of a file, particularly the
redundancy and orderliness of the data, can strongly affect the compression
ratio. Additionally, the speed of document compression and decompression
should be considered, since speed directly impacts the overall efficiency of
any given compression scheme.

XML-Conscious Compression Schemes

XML is stored in plain text files, so the most obvious approach to XML
compression has been to use existing text compressors. The most commonly
used compressors are Gzip (www.Gzip.org/) and Bzip2
(sourceware.cygnus.com/bzip2/index.html).

Gzip is based on Lempel-Ziv (Lempel and Ziv, 1997). Gzip works by
checking if the current data has already been recorded in a temp buffer and if
so, the current data can be recorded as a reference to the previous data. When
similar data are compressed together, high compression ratios can be
achieved. Since Gzip is a plain text compressor it cannot take advantage of
the XML document structure, consequently, a compression tool that makes
use of the special properties of XML documents can be expected to yield
better performance. Unfortunately, none of the existing XML-conscious
methods on the market outperform Gzip in all aspects. Some are slower than
Gzip, while some have lower compression ratios (Gaily and Adler, 2003).
Some advantages of using Gzip include the ability to adapt Gzip sources to
perform in-memory compression, and Gzip is already supported in Web
streaming via HTTP compression.

An alternative general compression method is Bzip2, which produces a
better compression ratio than Gzip, but runs slower. Since Bzip2 is based on
Huffman coding, it must determine the frequencies at which characters occur
within the source text, then build a mapping between the Huffman code and
characters according to the frequency of each character. This mapping is
added on the top of the document and sent along to the client. Bzip2
provides a good compression ratio, but it requires knowing the statistics of
the source text ahead of time, and the overhead mapping is added to the
document (Seward, 2002).

John N. Dyer

73

Levene and Wood (2002) relate that the problems with compression using
Gzip, Bzip2, and related methods are twofold: first, compression of
elements or attributes may be limited by existing tools due to the long range
dependencies between elements and between attributes, that is, the
duplication is not necessary local, and second, to enhance compression, it
may be useful to use different compression techniques on different
components of XML. Levene and Wood (2002) suggest using two other
XML compression systems, XMILL (Liefke and Suciu, 2000) and
XMLPPM (Cheney, 2001). These systems are considered XML-conscious
compression systems since the compression techniques take advantage of
XML document structure. Other popular XML-conscious systems include
XMLZip (XML Solutions, 2003), Millau (Sundaresan and Moussa, 2001),
and XML-Xpress (ICT, 2003).

XMILL
XMILL is an XML compressor/decompressor that claims to achieve twice or
better compression ratios than Gzip, with similar execution time for
compression and decompression. XMILL is designed to take advantage of
regularity in XML data to improve compression performance. The idea
behind XMILL is to first parse the XML data with a SAX parser, then
transform the XML into three components: (1) elements and attributes, (2)
text, and (3) document structure, and then to pipe each of these components
through existing text compressors. By this method, text within a certain set
of element tags is placed into a container. Users with detailed XML
knowledge can also define their own heuristics to improve performance,
based on DTD conventions or XML-schema rules (Levene and Wood, 2002).

XMILL is based on the following 3 compression principles:

1. Separate structure from data, and compress them separately. Structure

consists of tags and attributes that form the XML tree, and data consists
of strings that make up element names and attribute values.

2. Group data items by meaning. Data is compressed according to
container, to increase the likelihood of structural similarity.

3. Use different compressors for each container, since different containers
may contain different types of data (names, numbers, web logs, etc.)

After the data is transformed, the result is compressed using a text-based
compression program such as GZIP, and then stored in an output file.

Journal of Business, Industry and Economics
Volume 18, Spring 2013

74

XMLPPM
XMLPPM is a stream-oriented parser that requires setting handlers to deal
with the structure that the parser discovers in the document. XMLPPM uses
different text compressors with different XML components, that is, one
model for element and attribute compression and another for text
compression. Additionally, XMLPPM utilizes the hierarchical structure of
XML documents to further compress documents.

XMLZip
XMLZip is a compressor and decompressor for XML documents written in
Java and produces ordinary pkzip/WinZip zip files, based on the W3C DOM.
XMLZip first parses XML data with a DOM parser, then breaks the
structural tree into multiple components: a root component containing all
data up to depth d from the root, and one component for each of the subtrees
starting at depth d. The root component is then modified, then references to
each subtree are added onto the root, and finally components are compressed
using Java's built-in ZIP/DEFLATE library (Cheney, 2001).

XMLZip allows users to choose the depth at compression time, thus allowing
users to select the DOM level at which to compress the XML files. This
allows continued use of the DOM API without decreased performance.
XMLZip only decompresses the portion of the XML tree that needs to be
accessed, allowing applications to access data without uncompressing the
whole file, thus reducing execution time, run-time space, and memory usage.

Millau
Millau was designed as a binary XML compression method that is schema
aware, and has been shown (Sundaresan and Moussa, 2001) to exhibit
superior compression over ZIP compression for XML documents less than
5k. Millau encoding is based on the Binary XML format from the Wireless
Application Protocol (WAP) that losslessly reduces the size of XML
documents. Millau improves on the compression performance of WBXML
by using the structure and data types in XML documents, and also extends
the format to make it more suitable for business-to-business applications.

Recall, one of the drawbacks of using traditional text-compression
algorithms is that they perform character-based compression. A proposed
XML encoding format from the WAP forum is based on a table for
associating tokens with XML tags and attribute names, but does not
compress character data, and lacks a method for building the association
table. Millau extends further and supports compression of character data,
and sets out a strategy for building the table.

John N. Dyer

75

Millau format also saves space tokens rather than strings (which can be
arbitrarily long in XML). A custom parser for processing the format is
implemented using DOM and SAX adapted to handle Millau streams,
resulting in better performance. This layer of abstraction for Millau streams
is significant, since it allows applications to access the data transparently
through either the SAX or DOM API, making it easy to design applications
based on Web standards.

XML-Xpress
XML-Xpress is a DTD/schema specific XML coder. The compression ratio
of an XML file can be greatly improved when a known schema is used.
When the schema is known, XML tags can be encoded very efficiency.
Schemas also provide the data types of element data, thus allowing
compression routines for specific data to be used, further improving the
compression ratio.

XML-Xpress can parse and encode files one at a time, or if input data is
known to arrive more slowly, the program can be configured to accept data
as it is received (packet level compression). This prevents the performance-
degrading latency caused by waiting for entire large files to arrive. XML-
Xpress also supports concurrent compression, which uses the similarities
between files when multiple files are compressed simultaneously.

The disadvantage of XML-Express is that it is a schema-specific encoder,
and significant compression ratios are dependent on the presence of a known
single schema. In the absence of such a schema, XML-Express resorts to
using a general-purpose encoder, and the reported outstanding compression
performance is lost.

Scheme Characteristics and Performance Evaluations

Little research has been conducted on the efficiency of XML compression
and XML-conscious compression schemes, particularly geared to measuring
and comparing/contrasting compression ratios, and
compression/decompression times over the spectrum of schemes, as well as
aptness for Web style services. Most research has focused on proposed
alternatives to existing schemes (Cannataro et al. 2001, Cheney 2001, Mertz
2001, 2003, Sundaresan and Moussa 2001, Levene and Wood 2002,
Neidermeier et al. 2002) typically measuring, and comparing/contrasting
against Gzip, Bzip2, and XMILL. As a result, none of the existing XML-
conscious methods on the market have been shown to outperform any other

Journal of Business, Industry and Economics
Volume 18, Spring 2013

76

in all aspects. Some are slower/faster at compression/decompression, while
some have lower/higher compression ratios.

Sundarson and Moussa (2001) conducted experiments compressing various
size documents with Gzip. The documents included XML formatted Web
log access files and Shakespeare’s play, Hamlet. The experiment purported
to emulate documents such as XML database files that are rich in data
redundancy. The results showed that Gzip achieved compression ratios
between 96% (log document size = 244655 bytes, 42% content, 58%
structure) and 72% (Hamlet document size = 288735 bytes, 60% content,
40% structure). Compression/decompression times for the documents were
quite fast: 3.33-msec/3.30-msec for the log document, and 77-msec/70-msec
for the Hamlet document. Gzip is generally considered an efficient
compression tool but is often lacking in providing the best compression ratio
since the XML document structure inhibits its performance.

Bromberg (2001) reported that he had consistently achieved 80% - 95%
compression ratios using Bzip2 to compress XML documents, but
compression speeds were long for tag heavy documents (4 seconds for 110K
document), in spite of its more rapid decompression speed (170-msec).
Cheney (2001) reported that Bzip2’s compression ratio was 20% - 30%
better than Gzip, and about the same as XMLPPM. Disadvantages of Bzip2
are that it exhibits slow compression speed and the compression is off-line.
According to Cheney, “Off-line compression is undesirable because it forces
a long wait before document parsing and processing can begin.”

Cheney (Cheney, 2001) reported that XMILL compression ratios using Gzip
are only about 10% better than when using Gzip alone, and that using
compressors other than Gzip compress 5% - 10% worse than the original
document. Liefke and Suciu (2000) reported that XMILL provides
compression ratios two or more times that of Gzip, at about the same speed.
There are several known limitations to XMILL. First, XMILL is not
designed to work with a query processor, hence integration of XMILL’s
decompressor and a DB query engine. Second, XMILL only achieves
greater compression ratios than traditional text-compression methods if
dealing with data larger than approximately 20,000 bytes (Liefke and Suciu,
2000). Last, since XMILL does not support online encoding, it might be a
disadvantage in some online transaction, data exchange applications.
Cheney (2001) also related that XMILL always requires user assistance to
achieve the best compression. XMILL is most efficient for large files, and
allows the user to choose a compressor for data containers, but does not

John N. Dyer

77

support query processors. The results of this study did not find measures
relating to XMILL compression/decompression speeds.

XMLZip allows users to access specific portions of files, but does not
outperform traditional Gzip compression ratios. XMLZip’s compression
ratio is not as good as Gzip when measured over an entire document. An
advantage of XMLZip is that it reduces the size of XML file while
maintaining the accessibility of the DOM API. Additionally, XMLZip is
capable of selective compression and decompression of the documents,
allowing users to determine the DOM level at compression time. However,
XMLZip can only be run on entire XML file objects, and is thus offline-
only. Lastly, Sundarson and Moussa (2001) reported that the main limitation
of XMLZip is that “it consumes large memory resources and runs out of
memory for large documents.” The results of this study did not find
measures relating to XMLZip compression ratios, or
compression/decompression speeds.

Girardot and Sundaresan (2001) reported that Millau's token parsing is faster
than XMILL and Gzip, has the highest compression ratio for small files, but
does not outperform Gzip for files over 5k. Although traditional text-
compression algorithms outperform on large XML files, Millau achieves
better compression for file sizes between 0-5k, which the above authors
claim is the typical file size for e-Business transactions, such as orders, bill
payments, etc. In experiments (Girardot and Sundaresan, 2001), Millau’s
compression ratio for the entire XML document was about 81% versus 87%
when compressed with Gzip. When applied to the markup portions of the
document, the compression ratios were approximately 82% versus 91%, and
when applied to the data only, equal compression ratios of 79.5% resulted.
Sundarson and Moussa (2001) conducted experiments compressing various
size documents with Millau. The documents included the same as their tests
on Gzip. The results showed that Millau achieved compression ratios
between 96% (log document size = 244655 bytes, 42% content, 58%
structure) and 75% (Hamlet document size = 288735 bytes, 60% content,
40% structure). Compression/decompression times for the documents were
relatively slow when compared to Gzip: 1170-msec/1075-msec for the log
document, and 1511-msec/861-msec for the Hamlet document. Further
experiments show that parsing a Millau stream (employing tokens) is five
times faster than parsing a straight ASCII XML stream, because the Millau
stream requires only binary token comparisons, versus the string
comparisons for ASCII streams. Additionally, because the structure and
content are separate, only the structure stream needs to be parsed, further
reducing run-time.

Journal of Business, Industry and Economics
Volume 18, Spring 2013

78

Intelligent Compression Technologies (2003) claims that XML-Xpress has
the highest compression ratios, and the fastest execution times, but requires
that files adhere to a specific schema. Otherwise the gains are erased. XML-
Xpress also supports on-line encoding and concurrency compression. On
average XML-Xpress achieves 81% higher compression rates than XMILL,
and runs on average 55% faster than XMILL (ICT, 2003). The speed of the
compression may be slower than Gzip, since this method involves added
DOM parsing. However, the ratio should be higher than Gzip because tag
names and attribute names are the major contributor towards the huge size of
XML files, and are all replaced by tokens, resulting in significant space
savings. XML-Xpress is also claimed to reduce file sizes on the order of up
to 34-to-1 at throughputs up to 9 mb/sec on a test database.

XML Compression Categories

Until recently, general-purpose text compressors were the primary tools for
XML compression. Unfortunately, these tools were not designed with regard
to the Web environment or Web services applications. The environment of
the Web services applications (client-server models, bandwidth
considerations, middleware programs, etc) requires attention not only to file
size, but also to processor overhead, execution speed, transmission speed,
middleware flexibility, and data flow/streaming considerations, among
others. Users must carefully select an XML compression scheme depending
on the type of data and applications involved, and whether file size,
execution speed, or data flow flexibility is the highest priority.
Unfortunately, none of the current XML compression schemes facilitate a
compress-before-transmission/decompress-on-receipt framework that is
transparent to users (Dodds, 2000) and expected in many Web services
applications. In order to qualify an XML compression system for
appropriate use, the XML document in question should be categorized into
one of three categories based on the data within and the accompanying
schemes/DTDs. This section attempts to provide a categorization of each of
the XML compression and XML-conscious compression schemes discussed
above.

The first category, Client Priority, is for documents that are to be
compressed once (server side), and then decompressed many times by
different users in different places (client side). For this type of document,
the compression ratio and speed of decompression is more important for the
client than the compression speed and processor overhead of the server. The
second category, Equal Priority, is for smaller documents that are created
once, sent once, and received once (such as inter-database communication

John N. Dyer

79

documents). This type of document requires speedy compression,
decompression, and transmission, while the compression ratio is of lesser
importance. The third category, Server Priority, is for large documents for
which storage capacity is a constraining factor, while the speed of
compression and decompression is secondary. This type of document
requires an emphasis on the compression ratio.

Based on the findings in this study, each of the compression schemes
discussed above (with the exception of XMLPPM) is categorized below
(Table 1). The goal of this categorization is to provide a summary of
characteristics of XML compression schemes to aid the practitioner in
selecting the appropriate scheme for application. Each scheme is categorized
according to characteristics relating to compression ration, compression
speed, decompression speed, and processing characteristic (on-line versus
off-line). Note, in Table 1 some compression schemes are relevant to more
than one category.

 Table 1. Compression Scheme Categories

Scheme

Ratio

Speed
Decompression

Speed
Off-Line

vs. Online
Compression

Category

Gzip

1Moderate
2High

Fast

Fast

On-line

Client Priority
Server
Priority

Bzip2

High

Slow

Slow

Off-line

Server
Priority

XMILL

3Moderate
4High

Fast

Fast

Offline

4Client
Priority
 Equal Priority
4Server
Priority

XMLZip

Moderate

7Variable

7Variable

Off-line

Equal Priority

Millau

5Moderate
6High

Slow

Slow

Off-line

5Server
Priority

XML-Xpress

High

Moderate

Fast

On-line

Client Priority
Equal Priority
Server
Priority

Notes: 1 small documents, 2 large documents, 3 documents smaller than 20k, 4 documents larger than 20k, 5
document smaller than 5k, 6 documents larger than 5k, 7 XMLZip is capable of selective compression and
decompression of the files, allowing users to determine the DOM level at compression time.

Journal of Business, Industry and Economics
Volume 18, Spring 2013

80

Other Recently Proposed XML Compression Schemes

Most current research regarding XML compression relates to proposed
alternatives to the traditional XML compression and existing XML-conscious
compression schemes. Cheney (2001) describes two proposed alternatives:
Encoded SAX (ESAX) and Multiplexed Hierarchical Modeling (MHM).
Cannatoro et al. (2001) describe an alternative based on data restructuring and
compression, called semantic lossy compression (SLC). Mertz (2001, 2003)
described an alternative based on block-level compression. Levene and Wood
(2002) describe an algorithm to compress XML documents that are valid with
respect to a given DTD, using the DTD to encode the structure of the data.
Similarly, Niedermeier et al. (2002) describe a scheme based on the binary
format for XML data, using a context sensitive approach that builds on the
knowledge of the standardized schema definition at the encoder and decoder.
These proposed alternatives are briefly discussed below.

According to Cheney, the idea behind ESAX is to leverage the work a SAX
parser does by encoding the sequence of certain parsing events. A decoder can
decode these events, and reconstitute an XML document equivalent to the
original. A single byte event encoding was used to encode element start tags,
end tags, and attribute names, and to indicate events such as “begin/end
characters”, “begin/end comment”, and so on. The encoder and decoder
maintain consistent symbol tables such that when a new symbol is
encountered, the encoder sends the symbol name and the decoder enters it into
the table. The encoding was implemented using Expat XML parser, version
1.95. The author concluded, through experimentation, that ESAX speeds up
and improves compression for all compressors, and compresses 2% - 4% better
than Bzip2 when applied to text XML. ESAX also facilitates incremental
transmission.

MHM, also resulting from the work by Cheney, is based on the SAX encoding
related to ESAX and on PPM modeling. Refer to the author’s study (Cheney,
2001) for details regarding PPM. The MHM technique employs two basic
ideas: multiplexing several text compression models based on XML’s syntactic
structure (different models based on structure, attributes, etc.), and injecting
hierarchical element structure symbols into the multiplexed models. The
author relates that multiplexing enables more efficient hierarchical structure
modeling, while model multiplexing breaks existing cross-class sequential
dependencies. The idea is that if the dependencies can be restored, then
prediction can be improved. A common case for these dependencies is for the
enclosing element tag to be strongly correlated with enclosed data. According
to Cheney, “MHM exploits this by injecting the enclosing tag symbols into the

John N. Dyer

81

element, attribute, or string model immediately before an element, attribute, or
string is encoded.” He further related that “Injecting” a symbol means “telling
the model that it has been seen but not explicitly encoding or decoding it.”
Although several models were built, the author concluded that MHM
compressed text XML data about 5% better and structured data about 10% -
25% better than the “best” existing method. Unfortunately, MHM was found
to be very slow.

Cannatoro et al. (2001) relate that the idea behind SLC is to process the XML
document (both data and structure) in such a way that elements can be
regarded as tuples of a relation, to single out a number of dimensions and
measures and provide a multidimensional representation that will be structured
as a datacube, with aggregate data on suitable dimension levels. As a result,
the document is reorganized according to some aggregation functions,
resulting in a synthetic version of the original document. The authors also use
lossless compression techniques for the documents markup structure and both
lossy and lossless techniques for the data. Refer to the author’s study for
details regarding both the structural and content compression. The authors
found (based on experimental documents) that structural compression ranged
from about 79% to over 99% (based on number of structural elements), while
content compression ranged from about 90% to over 96%, and outperformed
both XMILL and Gzip. The authors further related that the scheme, based on
document restructuring, makes sense in particular when database-like rather
than narrative documents are considered.

Mertz’s (2003) alternative is based on document transformation via blocking
(grouping close together) relatively homogenous sets, like tags, attributes, and
element bodies of different types. In essence, the transformed document
contains the same information as the original document, but is structured in a
more compression friendly style. Each block in the transformed document is
then compressed by conventional means (Gzip, Bzip2, etc.), transmitted,
decompressed, then reconstructed in a serial fashion. Based on
experimentation, the author concluded that for small block sizes (less than
10k) compression is worse than using conventional file level compression; for
block sizes around 10k, block-level compression appears adequately good; and
for block sizes of 100k and greater, block-level compression is close to and
sometimes better than file-level compression techniques.

Levene and Wood (2002) provide an algorithm to compress XML based on the
knowledge encapsulated in the DTD. The method encodes information that is
present in the XML document but not in it’s DTD. The authors relate that the
compression of the document contains three elements: (1) the DTD, (2) the

Journal of Business, Industry and Economics
Volume 18, Spring 2013

82

encoding of the document’s structure, given the DTD, and (3) the textual data
contained in the document, given the DTD. The outputs of these three
elements can be compressed further by piping them through standard text
compression tools. No experiments were related in the paper, hence no
measures or comparisons for the scheme were provided.

Niedermeier et al. (2002), while working on the MPEG-7 standard, developed
a binary format coding algorithm with special features for encoding XML data.
The authors describe a schema-aware approach that exploits the knowledge of
the standardized MPEG-7 syntax definition of the encoded XML document on
the encoder and decoder side. Refer to the study (Neidermeier et al., 2002)
for details regarding the MPEG-7 tool for compressing and streaming of XML
data. The authors concluded, via experimentation, that their approach provides
a good compression ratio, up to 98% for document structure.

Conclusions & Suggestions for Future Work

This paper provided a qualitative overview of existing and proposed schemes
for efficient XML compression and made recommendations relating to
efficient XML compression schemes based on three proposed categories of
XML documents. These categories were defined as Client Priority, Equal
Priority, and Server Priority. Existing studies of traditional compression and
XML-conscious compression schemes were analyzed to determine which of
the three categories each scheme was most suited for. The goal of
categorization was to provide a summary of characteristics of XML
compression schemes to aid the practitioner in selecting the appropriate
scheme for application. It is concluded that there is not one “best” scheme for
XML compression, but instead, each scheme should be considered in regards
to the practitioner’s desire for compression ratio, compression and
decompression speed, and suitability to online/off-line processing.

Little attention has been given to measuring, comparing, and contrasting all
traditional compression and current XML-conscious compression schemes
across the board in regards to various metrics and XML document
structures/content. Most studies have very limited measures and comparisons,
wherein most measures provided ignore one or more major metrics, and most
comparisons are limited to only a few schemes. Other ideas for future studies
include analyzing all schemes using a variety of metrics, over a broad array of
XML document structures, content types, file types, and file sizes.

John N. Dyer

83

References

ARMSTRONG, E. (2000) “Working with XML: Serial Access with SAX,”
from java.sun.com, July 13, 2000, http://java.sun.com/xml/jaxp-docs-
1.0.1/docs/tutorial/sax/index.html

BOSAK, J. AND BRAY, T. (1999) “XML and the Second-Generation
Web,” Scientific American, May 1999.

BOSWORTH, A. (1998) “Microsoft's Vision for XML,” in SGML/XML
Europe, http://www.oasis-open.org/cover/bosworthXML98.html.

BROMBERG, P. (2001) “XML Data Compression / Decompression Over
the Wire,” from www.eggheadcafe.com,
http://www.eggheadcafe.com/articles/20010604.asp

CAGLE, K. (2000) “A Tale of Two Parsers,” from
www.webtechniques.com,
http://www.webtechniques.com/archives/2000/07/progrevu

CANNATARO, M., G. CARELLI, A. PUGLIESE, AND D. SACCA (2001)
“Semantic Lossy Compression of XML Data,” in Proceedings of the 8th
International Workshop on Knowledge Representation meets Databases.

CHENEY, J. (2001) “Compressing XML with Multiplexed Hierarchical
PPM Models,” in Proceedings of the IEEE Data Compression Conference,
pp. 163-172.

DODDS, L. (2000) “Good Things Come in Small Packages,” from
XML.com, March 23, 2000,
http://www.xml.com/pub/2000/03/22/deviant/index.html

GAILY, J. AND ADLER, A. (2003) “GZIP,” from Gzip.org,
http://www.Gzip.org

GIRARDOT, M. AND SUNDARESAN, N. (2001) “Millau: an encoding
format for efficient representation and exchange of XML over the Web,” in
Proceedings of the 9th International World Wide Web Conference.

GOEBEL, G. (2001) “Introduction / Lossless Data Compression,” from
Vectorsite.net, http://www.vectorsite.net/ttdcmp1.html.
.

Journal of Business, Industry and Economics
Volume 18, Spring 2013

84

GZIP (2001) “Gzip Manual” from Linuxprinting.org,
http://www.linuxprinting.org/man/Gzip.1.html.

HALLOWAY, S. (2000) “Java, SAX & DOM: Technical Tips,” Sun
Microsystems. June 27,
http://developer.java.sun.com/developer/TechTips/2000/tt0627.html

ICT (2003) “Product Overview – Multi-filter Compression System,” white
paper, from XpressFiles,
http://www.ictcompress.com/XpressFilesWhitePaper.pdf

KING, A. (2003) “Speed Up Your Site – Web Site Optimization”, New
Riders Publishing, Indianapolis, Indiana.

LEMPEL, A. AND ZIV, J. (1997) "A universal algorithm for sequential data
compression," IEEE Transaction on Information Theory, 23(3): 337-343,
May.

LEVENE, M. AND WOOD, P. (2002) “XML Structure Compression,”
http://web.dcs.bbk.ac.uk/~mark/download/compress.pdf

LIEFKE, H. AND SUCIU D. (2000) “XMILL: An efficient compressor for
XML data,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 153–164, Dallas, Texas.

MEGGINSON D. (2000) “SAX: History and Contributors,” from Megginson
Technologies, http://www.megginson.com/SAX/index.html

MERTZ, D. (2001) “Exploring the Entropy of Documents,” Xml Matters:
Xml and Compression, from IBM, http://www-
106.ibm.com/developerworks/xml/library/x-matters13.html

MERTZ, D. (2003) “Compression and Streaming of XML Documents,”
from Intel Corporation, http://cedar.intel.com/cgi-
bin/ids.dll/content/content.jsp?cntKey=Generic+Editorial::xml_comp&cntTy
pe=IDS_EDITORIAL

NEIDERMEIER, U., J. HEUER, A. HUTTER, W. STECHELE AND A.
KAUP (2002) “An MPEG-7 Tool for Compression and Streaming of XML
Data,” in Proceedings of IEEE International Conference on Multimedia and
Expo, Lausanne, Switzerland, August 26-29, 2002, pp. 521-524.

John N. Dyer

85

NEWCOMER, E. (2002) “Understanding Web Services – XML, WSDL,
SOAP, and UDDI,” Addison Wesley, Indianapolis, Indiana.

SCHMELZER, R. (2002) “Breaking XML to Optimize Performance,”
ZapFlash e-newsletter, October7, 2002,
http://www.zapthink.com/flashes/10072002Flash.html

SEWARD, J. (2002) “Bzip2,” from Redhat.com,
http://sources.redhat.com/bzip2

SUNDARESAN, N. AND MOUSSA, R. (2001) “Algorithms and
Programming Models for Efficient Representation of XML for Internet
Applications,” in Proceedings of the World Wide Web Conference, May 2-5,
2001, Hong Kong.

VEILLARD, D. (2000) “XML: Still validating while using SAX Interface?”
from XMLSoft.Org, in The XML C Library for Gnome, October 15, 2000,
http://xmlsoft.org

WALSH, J. (1998) “Web Designers Eye XML Data Compression,” Info
World [Electric], Vol. 20, Issue 18, May 4, 1998,
http://www.infoworld.com/cgi-bin/displayStory.pl?980430.wcxml.htm

WHATIS.COM (2001) “Lossless and Lossy Compression,” from
Whatis.com,
http://whatis.techtarget.com/definition/0,,sid9_gci214453,00.html. 2001.

WORLD WIDE WEB CONSORTIUM (W3C) (1998). “Extensible Markup
Language (XML) 1.0,” Second Edition, http://www.w3.org/TR/2000/ REC-
xml-20001006.

XML SOLUTIONS (2003) “XMLZip,”
http://www.xmls.com/resources/xmlzip.xml

Journal of Business, Industry and Economics
Volume 18, Spring 2013

86

