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Abstract 

Over the last several decades, quality improvement approaches and 
applications have expanded beyond the manufacturing floor to other areas of 
the operation.  In more recent years, service industries have embraced the 
concepts of continuous improvement and six sigma as well.  In applying the 
quality tools to service processes, challenges have developed in making the 
transition from factory volume production rates and the sometimes more 
variable activity rates of services.   
 
A problem seen when applying control charts to monitor performance for 
service processes is that the size of the sample can vary dramatically from 
sample to sample.  For p-chart and u-chart applications, several 
transformation methods for handling the variation in the size of the sample 
have been developed over the past few decades.   

 
When faced with the desire to take advantage of run rules and the straight 
line control limits under process conditions of varying sample sizes, the 
practitioner has several choices.  In practice, having one transformation that 
is a better performer than others under given process conditions will allow 
the practitioner the ability to use the more appropriate transformation 
method, and thus have a more optimal control charting application. 

 

 
Introduction 
 

Service industry processes are being identified more readily as 
potential applications of control charts and other statistical analysis tools of 
continuous improvement (Woodall, 2006; Chow, Woodford, & Showers-
Chow, 2008; Chow, Finney, & Woodford, 2009; Duran & Albin, 2010; 
Kumar, 2005; and Gregorio & Cronemyr, 2011).  Quality improvement 
methods are being adapted and converted from manufacturing applications to 
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those processes in services including customer calls to service call centers 
(Arora, & Bandara, 2006; Avramidis, Chan, & L’Ecuyer, 2009; and Landon, 
Ruggeri, Soyer, & Tarimcilar, 2010), service quality in banking (Chen, 
2009), patient care in medical clinics (Goodnough, et al, 2011; Joner, 
Woodall, Reynolds, & Fricker, 2008; Boe, Riley, & Parsons, 2009), and 
student success rates in higher education courses (Murgatroyd, 1993). 

 
In this study, three transformation methods for p-charts and u-charts 

when sample sizes vary are compared using simulation and Pitman 
Closeness Criterion.  The results provide process conditions under which 
each transformation method performs better than the others. However, the 
results also reveal that in real world applications, these differences may be 
negligible.  The results of the study serve as a reminder that when using 
simulations and computer computations, a review of the data is necessary to 
determine real relevance in the findings. 

 
Attribute control charts have been used in industry for decades to 

track and identify special cause variation.  One challenge to the quality 
practitioner is situations in which sample sizes vary from sample to sample.  
The desire (or contractual requirement) to plot daily process data can create 
this special case of the attribute control chart.  Quality control texts provide a 
few methods to overcome part of the problem with variable sample size 
(Grant & Leavenworth, 1988; Montgomery, 1991), though in application 
these often do not provide a ready solution without adding additional 
concerns.  For example, some quality control texts suggest the use of 
variable control limits or the straight line control limit (Grant & 
Leavenworth, 1988; Montgomery, 1991).  However, use of the variable 
control limits or the straight line control limits derived using the average 
sample size can create more problems than they seem to solve.  

  
The variable control limit method adjusts for the change in sample 

size by recalculating the upper and lower control limits for each sample.  
Since the control limits are based on the actual size of the sample, they 
cannot be calculated prior to collection of the sample, so these calculations 
become part of the daily activity (Grant & Leavenworth, 1988).  This method 
also gives a “skyline” effect on the chart and as Montgomery (1991) points 
out, identifying trends can be difficult and looking at runs and nonrandom 
patterns is of little use.  In cases where sample size varies substantially, this 
can cause problems for personnel responsible for the production process, as 
it creates a continually changing set of control limits.   
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The straight-line control limit method utilizes control limits based on 
the average sample size.  Technical considerations of the straight-line control 
limits suggest that a 20-25% variation in sample size is acceptable (Grant 
and Leavenworth, 1988).  Using this method, when points are near the 
control limits, either just inside or just outside, further review of the samples 
is required to determine if special cause variation is present, since the control 
limits are only approximated based on the average sample size.  This 
requires additional effort of employees responsible for the operation of the 
process, and increased management oversight to assure that the process is 
correctly being monitored. 

 
When faced with the desire to take advantage of run rules and the 

straight line control limits under process conditions of varying sample sizes, 
the practitioner has several choices.  Duncan (1948) proposed a normalized 
transformation for p-charts with varying sample size.  Soffer (1981) pointed 
out the practical limitations of the stabilized p-chart which plots in 
standardized Z scores instead of proportion nonconforming, which are more 
readily understood by production personnel.  He proposed a transformed p-
chart which plots in the identifiable proportion nonconforming.  Both cases 
lead to a simple adaptation for u-charts with varying sample size, the former 
provided in Montgomery (1991).   

 
Chan and Xiao (1990) and Rocke (1990) submitted similar 

transformations for both the p-chart and the u-chart.  These u-chart 
transformations are based on the normal distribution, plot in 
nonconformances per unit, and maintain straight line control limits for ease 
of use on the production floor. 

 
Plotting stabilized p gives the ease of the straight-line control limits 

while maintaining the ability to effectively identify any adverse trends.  The 
main detractor for using stabilized p is that the plotted points are in terms of 
Z-values and not in the proportion nonconforming.  This can often cause 
confusion for shop floor personnel responsible for the production process. 
 
The Alternate Transformations 

As a way of taking advantage of the straight-line control limits found 
with the stabilized p, and alleviating the problem of plotting Z-values, Soffer 
(1981) proposed a transformation, which converts back to a more 
recognizable proportional value.  Rocke (1990) and Chan and Xiao (1990) 
proposed additional adjusted and transformed p-charts (as well as u chart 



Journal of Business, Industry and Economics 
Volume 18, Spring 2013 

112 

transformations), which also plot in proportion nonconforming units of 
measure. 

This study uses simulation and Pitman Criterion as a method of 
evaluating the effectiveness of these transformations.  Duncan’s stabilized p 
is used as the “true” value of the transformed p.  Of particular interest is to 
identify if, under differing conditions of proportion nonconforming and/or 
sample size, one transformation outperforms the others (in a Pitman sense).  
Knowing this would allow the practitioner the ability to implement a 
transformation method most suitable to their needs. 
Transformation Formulas 

Tables 1 and 2 provide the transformation formulas used to calculate 
the plotted point, standard error, center line and control limits for each of the 
p-chart and u-chart transformations evaluated. 
p-Chart Transformations 

Method Transformation Plotted Standard Error Center Line  & 
Control Limits 

Duncan n
pppstablized  

n
pp

stabilized
)1(

 

0CL  

3Limit  

Soffer 

npnxy /  )1( ppy  0CL  

)1(3 ppLimit
 

Rocke nn

pnx
pp

i

iiadj  npppadj /)1(
 

pCL  

npppLimit /)1(3

 

Chan/ 
Xiao 

pp
n
n

pp i
i

i *

 

nppp /)1(*  pCL  

npppLimit /)1(3

 

Table 1 
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u-Chart Transformations 

Method Transformation Plotted Standard Error 
Center Line  & 
Control Limits 

Duncan nu

uuustablized
/

 nustabilized /  0CL  

3Limit  

Soffer 
nu

n
cyu  uy  0CL  

uLimit 3  

Rocke nn

uncuu
i

iiadj  nuuadj /  uCL  

nuuLimit /3  

Chan/ 
Xiao 

uu
n
nuu i

i
i*  nuu /*  uCL  

nuuLimit /3  

Table 2 

The Comparison 
 

In this study, we concern ourselves with the deviation from the upper 
control limit (UCL) and the lower control limit (LCL).  Studying these 
deviations at the control limits is based on two concepts.  First, Shewhart 
(1931) only provided “rules” regarding points plotted beyond the upper or 
lower control limits.  Additional run rules, which have been developed and 
reported by many, have relevance in application and should be incorporated 
in the actual use of the transformed control chart but are not considered for 
the purpose of this study.  The second concept is that performance at the 
control limits seems of logical importance, as points above the UCL would 
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indicate potential process degradation, and points below the LCL would 
signal an improving process.  Both cases would require further investigation 
and are of practical importance in process monitoring. 

 
While Ryan & Woodall (2010) and others have employed average 

run length to compare performance of different control charts, Chow et al 
(2007) proposed using Pitman criteria for comparing control chart 
performance.  Pitman (1937) introduced his method of determining the 
closer estimator based on the probability of the absolute deviation from the 
true parameter.  Using Pitman Criterion, if 1̂ and 2

ˆ are estimators of , then 

1̂  is said to be Pitman Closer than 2
ˆ if  

 
( 2

1)ˆˆPr( 21 . 

Keating, Mason, and Sen (1993), among others, have presented additional 
concepts including the concept of nearness.  1̂  is Pitman Nearer (PN) than 

2
ˆ if  

2121 PrPr  

 
Pitman realized the potential for intransitivity with his measure of closeness, 
which is a possible concern of this study.  When comparing three estimators, 
a possibility exists that 1̂ PN 2

ˆ , 2
ˆ PN 3

ˆ , and 3
ˆ PN 1̂ .   

 
A point that needs to be addressed is that Pitman Criterion only looks 

at which estimator is closer (or nearer) to the true value.  Detractors of this 
method of comparison would point out the potential lack of relevant 
difference in the Pitman comparison (Fountain, Keating, & Maynard, 1996).  
This concern can become a real problem when using computer simulation 
and calculations in the comparison.  In particular, when looking at the 
absolute difference between two values, the computer will look at the actual 
calculated values in making the comparison, without regard to significant 
digits or relevant decimal places.  

  
To address this concern, a follow-up evaluation makes the Pitman 

comparisons after rounding the deviations to the 4th decimal place, as this 
would represent the millionth decimal place, which should be suitable for a 
study of this nature.  In defining the closest or best estimator, Pitman (1937) 
pointed out that the practicality of the best or closest estimator needs to be 
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considered, and the actual application of the estimator as well as the penalty 
for mistake should be considered. 

 
p-Chart Comparison 

The simulation set the sample size as a uniform random variable and 
the proportion nonconforming as binomially distributed.  In order to evaluate 
the performance of each transformation under various conditions, the sample 
sizes and proportions are varied.  Sample sizes used in the simulation were in 
uniform ranges of 100 - 1000, 1000 - 5000, and 5000 - 15000.  Proportion 
nonconforming were set at 0.001, 0.0001, and 0.00001.  An initial simulation 
run of 200 trials established the estimates for p  and n . The number of 
“defects” per unit was produced using c as a Poisson random variable and u 
as the average non-conformances per unit inspected. Under this study, c was 
randomly generated at averages of 1.0, 1.5, 2.0, 2.5, and 3.0.  An initial 
simulation run of 200 trials was used to establish process averages on which 
the control limits would be based. 

 
Control limits for each estimator of p were calculated based on the 

estimates for p  and n  in the initial simulation run.  The main simulation 
consisted of 10,000 trials for each combination range of p and n.  With each 
trial, the deviation from both the UCL and LCL were calculated.  Table 3 
provides the calculations for deviation from the upper and lower limits for 
each transformation.  Table 4 shows the calculations for determining the 
absolute deviation from the “true” estimator value of the stabilized p 
transformation.  In order to make this comparison, deviations are converted 
using the standard error of each transformation so that all comparisons are in 
terms of standard deviation. 

Deviations from Limits 
Method of 
Transformation 

Deviation from Upper Limit Deviation from Lower Limit 

Duncan Z ZUCLZUCL  ZLCL LCLZ  

Soffer SofferSofferUCL pUCL1̂  SofferSofferLCL LCLp1̂  

Rocke RockeRockeUCL pUCL2
ˆ  RockeRockeLCL LCLp2

ˆ  

Chan/Xiao XiaoChanXiaoChanUCL pUCL //3
ˆ

 
XiaoChanXiaoChanLCL LCLp //3

ˆ
 

Table 3 
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Absolute Deviations from True Limit Deviations of Z Transformation 
Method of 
Transformation 

Absolute Deviation from “True” 
Upper Limit  

Absolute Deviation from “True” 
Lower Limit  

Soffer UCLUCLUCLDev 11
ˆˆ

 LCLLCLLCLDev 11
ˆˆ

 
Rocke UCLUCLUCLDev 22

ˆˆ
 LCLLCLLCLDev 22

ˆˆ
 

Chan/Xiao UCLUCLUCLDev 33
ˆˆ

 LCLLCLLCLDev 33
ˆˆ

 
Table 4 

u-Chart Comparison 

The conditions for the simulation study used a variable sample size 
which was uniformly distributed.  The three sample size ranges used in the 
simulation where (10, 100), (100, 500), and (500, 1500).  The number of 
“defects” per unit was produced using c as a Poisson random variable and u 
as the average nonconformances per unit inspected. Under this study, c was 
randomly generated at averages of 1.0, 1.5, 2.0, 2.5, and 3.0.  An initial 
simulation run of 200 trials was used to establish process averages on which 
the control limits would be based.  The main simulation consisted of 10,000 
trials for each of the combination of ranges of c and of n.  Table 5 shows the 
deviation from upper and lower limits, while Table 6 provides deviation 
from the “true” estimator values calculations.  To make the suitable 
comparison, the deviations in Table 8 are divided by the standard error of 
each transformation, thus comparisons are made in terms of standard 
deviation.  

Deviations from Limits 
Method of 
Transformation 

Deviation from Upper Limit Deviation from Lower Limit 

Duncan Z ZUCLZUCL  ZLCL LCLZ  

Soffer SofferSofferUCL uUCL1̂  SofferSofferLCL LCLu1̂  

Rocke RockeRockeUCL uUCL2
ˆ  RockeRockeLCL LCLu2

ˆ  

Chan/Xiao  XiaoChanLCLXiaoChanuLCL //3
ˆ

 
Table 5 

 
 

 

XiaoChanXiaoChanUCL uUCL //3̂
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Absolute Deviations from True Limit Deviations of Z Transformation 
Method of 
Transformation 

Absolute Deviation from “True” 
Upper Limit  

Absolute Deviation from “True” 
Lower Limit  

Soffer UCLUCLUCLDev 11
ˆˆ

 LCLLCLLCLDev 11
ˆˆ

 
Rocke UCLUCLUCLDev 22

ˆˆ
 LCLLCLLCLDev 22

ˆˆ
 

Chan/Xiao UCLUCLUCLDev 33
ˆˆ

 LCLLCLLCLDev 33
ˆˆ

 
Table 6 

The Results  

Results for the p-chart comparisons are summarized in table 7, giving 
the pair-wise comparisons for each of the calculated comparisons.  
 
p-Chart Pair-wise Comparison Summary 
 p=.01 p=.05 p=.10 p=.15 p=.20 

n=U(10,100) 

UCL use 
Chan/Xiao 
or Rocke 
 
LCL use 
Soffer 

UCL use 
Rocke or 
Chan/Xiao 
 
LCL use 
Chan/Xiao 

UCL use 
Rocke or 
Chan/Xiao 
 
LCL use 
Chan/Xiao 

UCL use  
Chan/Xiao 
or Rocke 
 
LCL use 
Chan/Xiao 

UCL use  
Chan/Xiao 
or Rocke 
 
LCL use 
Chan/Xiao 

n=U(100,500) 

UCL use  
Chan/Xiao 
or Rocke 
 
LCL use 
Chan/Xiao 
or Rocke 

UCL use 
Soffer 
 
 
LCL use 
Chan/Xiao 
or Rocke  

UCL use  
Chan/Xiao  
 
 
LCL use 
Chan/Xiao 

UCL use 
Soffer 
 
 
LCL use 
Chan/Xiao 

UCL use 
any 
 
 
LCL use 
any 

n=U(500,1750) 

UCL use 
Soffer 
 
 
LCL use 
Chan/Xiao 
or Rocke 

UCL use 
Soffer 
 
 
LCL use 
Chan/Xiao 

UCL use 
Soffer 
 
 
LCL use 
Chan/Xiao 

UCL use  
Chan/Xiao  
 
 
LCL use 
Chan/Xiao 

UCL use  
Chan/Xiao  
 
 
LCL use 
Chan/Xiao 

Table 7 

As previously mentioned, this table reflects the “pure” comparisons 
as calculated by the computer and does not take into account the concern of 
relevant difference.  The better Pitman performer under the simulated 
conditions is given for each combination of conditions.  In cases where the 
probability difference between two transformations was less than 5%, the 
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higher probability transformation is given, with the other offered as an 
alternative.  

As seen in Table 7, appropriateness of the transformation method 
does depend on the conditions of the process, as well as the importance of 
monitoring the process more effectively at the upper or lower control limit.  
When the process has a low proportion nonconforming and a relatively small 
variable sample size, the practitioner should employ the Soffer 
transformation when interested in monitoring against performance to the 
lower limit, such as cases of looking to identify improvements in the process.  
Under these same conditions, the practitioner should utilize the Chan/Xiao 
transformation when concerned with the stability of the process toward the 
upper limit when monitoring for process degradation. 

Of particular interest in this finding is that under conditions of higher 
proportion nonconforming (p=0.20), the Chan/Xiao transformation was 
preferable to the others under all cases of sample size.  This would direct the 
practitioner with higher proportion nonconforming rates to use the 
Chan/Xiao transformation in all cases.  In fact, when using the Pitman 
Criterion under the simulated conditions, the Chan/Xiao transformation is the 
choice transformation in eight of the 15 sets of conditions for the upper 
control limit, and 14 of the 15 sets of conditions for the lower control limit. 

The results of the u-chart simulation are summarized in Table 8, 
which displays the results for each of the process configurations studied.   
 
u-Chart Pair-wise Comparison Summary 
 c=1.0 c=1.5 c=2.0 c=2.5 c=3.0 

n=U (10,100) 

UCL use 
Soffer 

LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao  

LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao 

LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao 

LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao 

LCL use 
Chan/Xiao 

n=U 
(100,500) 

UCL use 
Chan/Xiao 
 

LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao 
 

LCL use 
Chan/Xiao 

UCL use 
Rocke or 
Soffer 

LCL use 
Rocke or 
Soffer 

UCL use 
Rocke or 
Soffer 

LCL use 
Rocke or 
Soffer 

UCL use 
Rocke or 
Soffer 

LCL use 
Rocke or 
Soffer 

n=U 
(500,1500) 

UCL use 
Soffer 
 
LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao 
 
LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao 
 
LCL use 
Chan/Xiao 

UCL use 
Chan/Xiao  
 
LCL use 
Chan/Xiao 

UCL use 
Rocke 
 
LCL use 
Rocke 

Table 8 
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When the simulation calculated that one transformation performs 
better than the others, that transformation is listed.  If two transformations 
are similar in their probability of nearness (within 5%), the transformation 
which calculated to be nearer is provided, with the other transformation 
offered as an alternate.  As an example, when c=1.0 and the sample size 
ranges from 10 to 100, the appropriate transformation when concerned with 
the UCL would be the Soffer based transformation, while the Chan/Xiao 
transformation would be better suited when concerned with the LCL. 
 
An Interesting Finding 

A quick look at the summary results would indicate that the 
Chan/Xiao transformation outperformed the others under more sets of 
process conditions.  This observation would lead the practitioner to the 
conclusion that if consistency of charting is important across the many 
processes within an operation, using the Chan/Xiao transformation would be 
most suited as a facility-wide standard.  But upon closer inspection of the 
data generated in this simulation, something a little more unexpected was 
discovered. 

 
While the computer simulation was set up to make the comparisons 

automatically, no level of relevance was programmed into the simulation.  
This left the computer to make comparisons of numbers that were calculated 
and carried to far more decimal places than are relevant in most studies and 
certainly beyond the relevance of most process applications.  A second 
simulation was run, this time rounding the standardized deviations from 
control limits to the fourth decimal place.  In application, it seems reasonable 
that the fourth decimal place should be sufficient for relevance.  In a closer 
review of the data, the differences when present were actually found at the 
15th decimal place.  These results are a reminder that when using computers 
to perform comparison calculations, a review of the raw data is always a 
good idea.   

 
Table 9 provides the results of the comparison for the p-chart 

transformations after rounding the absolute deviations to the fourth decimal 
place.   
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p-Chart Pair-wise Comparison Summary after Rounding 
 p=.01 p=.05 p=.10 p=.15 p=.20 

n=U(10,100) 

UCL use 
Chan/Xiao 
or Rocke 
 
LCL use 
Any 

UCL use 
Rocke or 
Chan/Xiao 
 
LCL use 
Any 

UCL use 
Rocke or 
Chan/Xiao 
 
LCL use 
Any 

UCL use  
Chan/Xiao 
or Rocke 
 
LCL use 
Any 

UCL use 
Any 
 

LCL use 
Any 

n=U(100,500) 

UCL use  
Any 
 
LCL use 
Chan/Xiao 
or Rocke 

UCL use  
Any 
 
LCL use 
Chan/Xiao 
or Rocke  

UCL use  
Any 
 
LCL use 
Chan/Xiao  

UCL use  
Any 
 
LCL use 
Chan/Xiao  

UCL use 
Any 
 
LCL use 
any 

n=U(500,1750) 

UCL use 
Any 
 
LCL use 
Chan/Xiao 
or Rocke 

UCL use 
Any 
 
LCL use 
Any 

UCL use 
Any 
 
LCL use 
Any 

UCL use 
Any 
 
LCL use 
Any 

UCL use  
Chan/Xiao  

LCL use 
Any 

Table 9 

These “relevant” differences are compared using the Pitman Criterion 
and show that from a relevant or practical sense, only 10 of the 30 sets of 
conditions have relevant closer/nearer estimators.  At the smaller sample 
sizes, deviation from the UCL is better estimated using either the Rocke or 
Chan/Xiao transformations.  Soffer (1981) pointed out that under conditions 
of small sample sizes, the transformation had potential drawbacks, which the 
simulation and comparison identify.  From a more general sense, when 
taking the relevant decimal places into account, the use of either the Rocke 
transformation or the Chan/Xiao transformation are more suitable under the 
studied conditions.   Soffer points this out as a situational issue of the 
transformation. 

 
When only concerning ourselves with calculations up to the 4th 

decimal place, there were no differences between any of the u-chart 
transformations.  In all cases, the differences between the standardized 
deviations of transformations from their control limits and the deviation of 
the standardized u were all beyond the 4th decimal place.  Although the 
transformations are all different, though similar, these differences do not 
change the relevant performance of any of the transformations. 
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Detection Errors 

Another practical measure was to identify cases where the 
transformation under consideration plotted either a “false alarm,” plotting a 
point beyond the control limits when it should not have, or “no alarm,” not 
plotting a point beyond the control limits when it should have.  False alarms 
are an obvious concern to the practitioner because they lead to investigations 
and evaluations of the process when no special cause variation is actually 
detected.  On the other hand, “no alarm” means that the process does exhibit 
special cause variation and the control chart does not trigger an investigation.  
Table 10 shows the conditions under which each of the p-chart 
transformations plotted one of these false/no alarms.  (u-chart detection 
errors were not simulated since the initial findings did not note any 
differences in the methods of transformation). 
 
Detection Error Rates 
Transformation and 
Conditions Number of Plotting Errors Percent Plotted Errors 

Soffer FA at LCL when p=.15 
and n varies between (10,100) 1 0.01 
Rocke FA LCL when p=.15 

and n varies between (10,100) 1 0.01 
Chan FA LCL when p=.15 

and n varies between (10,100) 1 0.01 
Soffer NA UCL when p=.15 

and n varies between (10,100) 5 0.05 
Soffer NA UCL when p=.20 

and n varies between (10,100) 14 0.14 
Soffer NA UCL when p=.10 

and n varies between (10,100) 28 0.28 
Soffer NA UCL when p=.05 

and n varies between (10,100) 76 0.76 
Soffer NA UCL when p=.01 

and n varies between (10,100) 159 1.59 
Soffer FA LCL when p=.01 

and n varies between 
(500,1750) 1656 16.56 

         FA = False alarm               NA = No Alarm 
Table 10 

As shown in Table 10, all three transformations had one false alarm 
in 10,000 trials when p was set at 0.15 and n varies.  The Soffer 
transformation also had issues of false and no alarms under other sets of 
conditions.  Particular concern would be the false alarm rate when p is small 
and the size of the sample is larger.  This seems to be largely due to 
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conditions where the sample size requires using the alternative LCL when 
the transformed value is negative. 
 
Conclusion 

As we would tend to expect when trying to apply theoretical methods 
to real problems, no one transformation method is better than the others in all 
cases.  Practitioners wanting to use the p-chart with variable sample sizes 
must evaluate the conditions under which their specific process exists, and 
make the appropriate selection of methods of transformation.  From a more 
practical and relevant standpoint, the transformations proposed by Rocke and 
Chan/Xiao tend to outperform the Soffer transformation.  If the practitioner 
has a number of processes to chart and wants to use one standard method of 
transformation for consistency across all processes, selection of either the 
Rocke transformation or the Chan/Xiao transformation should perform 
equally from both a practical and a relevant standpoint. 

 
In situations with variable sample size, transformations used in 

plotting u-charts provide both the ease of interpretation against the straight 
line control charts and plotting points in a more readily recognizable unit of 
measure.  This study has shown that while there are some calculated 
differences in the performance levels of each transformation under specific 
process conditions, there is no relevant difference that would be expected to 
appear in application.  Although there may be cases where the practitioner is 
concerned with differences beyond the 4th decimal place, a simple review of 
the data can show where these differences may occur, and the practitioner is 
free to make decisions based on that outcome. 

 
In cases where both p-charts and u-charts are used with varying 

sample sizes, the practitioner would likely want to use the transformation 
most suited for their p-chart processes, and use the same type transformation 
for u-charts.  This will provide consistency throughout the facility and 
provide the best method of plotting these attribute control charts in cases of 
varying sample sizes. 
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