Math 431: Homework for Section 1.2

Due: Tuesday, August 26
1.* If

$$
\left[\begin{array}{cc}
a+b & c+d \\
c-d & a-b
\end{array}\right]=\left[\begin{array}{cc}
4 & 6 \\
10 & 2
\end{array}\right]
$$

find a, b, c and d.
2. Let

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right], \quad C=\left[\begin{array}{rrr}
3 & -1 & 3 \\
4 & 1 & 5 \\
2 & 1 & 3
\end{array}\right], \quad D=\left[\begin{array}{rr}
3 & -2 \\
2 & 4
\end{array}\right], \\
& E=\left[\begin{array}{rrr}
2 & -4 & 5 \\
0 & 1 & 4 \\
3 & 2 & 1
\end{array}\right], \quad F=\left[\begin{array}{rr}
-4 & 5 \\
2 & 3
\end{array}\right], \quad O=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

If possible, computer the indicated operations:
(a) $C+E$ and $E+C$
(b) $A+B$
(c) $D-F$
(d) $-3 C+5 O$
(e) $2 C-3 E$
(f) $2 B+F$
3.* Let O be the $n \times n$ matrix all of whose entries are zero. Show that if k is a real number and A is an $n \times n$ matrix such that $k A=O$, then $k=0$ or $A=O$.
4. If A is an $n \times n$ matrix, what are the entries on the main diagonal of $A-A^{T}$? Justify your answer.

