
Assignment #5 CS 440 FA24 - Computer Networking

Pun Server and Client

Build a network server and client to implement the “pun service”. The server and client will
use port 5432⋆.

There are no command line arguments or output for the server (no interface - it is a daemon).
The server shutdown should be handled by catching the SIGTERM signal. The server should
use select(2) to terminate immediately when the SIGTERM signal is received.

The client has one required command line argument, the hostname or IP address of the
server. On success, the client will display the joke message payload to stdout and then
terminate. The client does not have a menu or accept user input.

Both the server and client should handle errors gracefully. Graceful means your programs
should recover from the error and continue if possible, otherwise they should display an
informative message, cleanup resources, and terminate.

The pun protocol has seven message types as follows:

OpCode Description Example payload
100 Hello server, sent from client “tell me a joke”
200 Hello client, sent from server “knock, knock”
300 Ask who setup, sent from client “who’s there”
400 Who response, sent from server “yoda lady”
500 ask response who?, sent from client “ yoda lady who?”
600 Punchline, sent from server “good job yodeling”
700 Error, may be sent from server OR client “Protocol violation”

The format for each message is as follows:

opcode

/ payload (c-string)

/ /

+---+-----------------------------------+

| | |

+---+-----------------------------------+

• Opcode, 3 bytes, ASCII
• Payload, 128 bytes, ASCII, Null terminated

Notice that the entire message is ASCII (plain text, no integers). This is conventional with

Figure 1: Pun protocol message exchange

most Internet protocols. The client always starts the protocol and only executes one pass
through the protocol. Messages are exchanged as shown in Figure 1.

Implement your protocol code (common data structures and functions) in separate proto-
col.h and protocol.c files. Your protocol code must include functions to assemble a message
(opcode + payload), extract an opcode from a message, and extract a payload from a mes-
sage. Your protocol.c, server.c, and client.c code must include your protocol.h file and use
your protocol code.

The opcode 400 payload should be randomly selected from one of the available responses
in the joke file (ASCII text file). Download a sample joke file from the class web page into
your program folder for development and testing. The joke file contains 2 lines per joke, the
“who response” (used with opcode 300) and the punchline (used with opcode 600). Figure 2
shows one example entry from a joke file.

The joke file must be loaded into memory when your server program starts. The joke file
should be closed immediately after the jokes are loaded into memory. Use a linked list to

Yoda lady

Good job yodeling

Figure 2: Example joke file entry

store your joke file in memory in the server. Be sure to deallocate the list the before your
server shuts down.

Use the arc4random(3) function to sample the PRNG and determine which joke from the
list to “tell”. Do not use the rand(3) function. See the rand(3) man page for why it should
never be used in critical code.

All messages received should be checked for validity. This means the message is the expected
type code and the payload length does not exceed the allowable length. You may include a
newline in the payload if you wish (you must include a null byte).

Message code 700 is only emitted when the protocol is not followed correctly or a message is
invalid. If either side of the connection receives a message that fails the sanity check, then
the receiving program should send a type 700 message and disconnect. Either side of the
connection (server or client) must send a type 700 message and disconnect when the protocol
rules are violated.

Your programs must be developed in C -std=c17 (the default) using the BSD socket API
on the CS server. The programs must compile and run on the CS server with cc (clang).

Your program must conform to the UNA CS Code Style Guide linked on the class web
page. Your program must compile without any compiler warnings to receive full credit.

Testing your server without your client:

See the note below about ports for testing your programs.

You may test your server, before you create your client, with the netcat utility nc(1). The
netcat utility will send and receive messages over the network. To test your TCP server
listening on port 8017, run your server in one terminal window (server’s terminal). Then in
a different terminal window (client’s terminal) you would type the following:

echo "test message\r" |nc localhost 5432

If your server is working correctly you’ll see the string displayed in the client’s terminal. The
port number must match the port your server is listening on in order to work.

Instead of logging in twice to the server, you may use the terminal multiplexer tmux(1). The
following list shows the tmux commands needed to open two screens for testing:

• tmux - start the tmux program
• CTRL+b " - split the current pane into two panes, top and bottom
• CTRL+b ↑ - move the cursor up a pane
• CTRL+b ↓ - move the cursor down a pane
• exit - close a pane (closing the last pane exits tmux)

See the man page tmux(1) for additional information.

⋆ Note: To avoid conflicting with your classmate’s programs when testing on the CS server,
use the last three digits of your student ID L# plus 11000 for your port number.

Due dates:

Friday 8th before 11:59 p.m.
Completed server and Makefile commit, tag it “server”

Wednesday 13th before 11:59 p.m.
Completed client commit, tag it “client”

To tag the commit, use an annotated tag after your commit.

How to submit:

Create an empty git(1) repository in a folder named “program-5”. Commit and tag your files
as described above in “Due dates”. You may, and should, commit more frequently than the
required commit dates. You should build your server and client programs in stages (skeleton,
startup, etc.) and commit the working version of each stage as you complete it.

Program evaluation:

Your program must conform to the UNA C Code Style. The “UNA C Code Style” is
linked on the class web page. Code will be evaluated for correctness, efficiency, and style.

Helpful resources:

Command line arguments: https://www.geeksforgeeks.org/command-line-arguments-in-c-cpp/

--

man pages - err(3), printf(3)

select(2), signal(3)

SLIST_INIT(3),

style(9), nc(1)

Additional resources:

https://beej.us/guide/bgnet/

https://csrc.nist.gov/Projects/ssdf

https://sourceware.org/gdb/current/onlinedocs/gdb.html

