
Assignment #7 CS 440 SP25 - Computer Networking

Many Internet client-server programs exchange information back and forth to complete a
task. A protocol is used to enable communications. For this assignment you will create a
network client that uses a challenge/response protocol.

Client Requirements

The client has one required command line argument, the hostname or IP address of the
server. The client will send a challenge request, receive an encrypted challenge, send an
encrypted challenge response, and the receive a status response. If the client violates the
protocol or sends a malformed message the server will respond with an error.

The message codes are:

• 105 - challenge request
• 110 - challenge
• 115 - challenge response
• 205 - success (challenge response is valid)
• 210 - failure (challenge response is invalid)
• 305 - error

1

The message format is a byte stream composed of 5 fields.

Description Length Data Type
Message code 3 bytes char
User name 16 bytes char
Initialization vector (IV) 16 bytes unsigned char
Payload length 4 bytes uint32 t
Payload (encrypted) 128 bytes unsigned char

message code

/ user name payload length

/ / IV / payload

/ / / / /

+---+----------+----------+-----+-----------+

| 3 | 16 | 16 | 4 | 128 |

+---+----------+----------+-----+-----------+

Only the user name field may be null terminated (max length is 16 bytes including the null
byte). The full message must always be sent for the challenge and challenge response (all
fields are required). The challenge request, success, and failure messages only require the
message code and user name fields and the remaining fields shall be ignored by the receiver
if sent. The error message only requires the message code field and the remaining fields shall
be ignored by the receiver if sent.

The challenge payload1 must be formatted as follows:

Description Length Data Type
Operation 1 byte char
Left operand 4 bytes uint32 t
Right operand 4 bytes uint32 t

The challenge is sent in the payload field and the payload length field indicates how many
bytes of the payload field are valid. Numeric values in the challenge message are the payload
length and the two operands. All numeric values must be sent in network byte order. The
unused portion of the payload field may be padded with arbitrary bytes.

1Size on the CS server using clang

2

Valid operations for the challenge are:

• Addition denoted as +
• Subtraction denoted as −
• Multiplication denoted as ∗
• Integer division denoted as /
• Remainder division denoted as %

The challenge response payload1 must be formatted as follows:

Description Length Data Type
Challenge response 8 bytes uint64 t

The challenge response is sent in the payload field and the payload length field indicates how
many bytes of the payload field are valid. Numeric values in the challenge response message
are the payload length and the response value. The unused portion of the payload field may
be padded with arbitrary bytes.

The payload field is always sent encrypted. It is encrypted/decrypted using AES with a
128 bit key. A C header file and object file to encrypt and decrypt the message payload is
available on the class web page (aes crypto.zip). The header file contains information for
how to use the encrypt/decrypt function in the object file. The client must use the provided
header and object file to encrypt/decrypt the message payload.

The provided encryption function must be called with the actual size of the payload to be
encrypted/decrypted (input length parameter). The payload length argument cannot be
larger than 96 bytes in order to leave room for expansion during encryption. This, of course,
means the input to be encrypted/decrypted cannot be larger than 96 bytes.

The client must use TCP and communicate on port 11,000. Your makefile must link the
aes encrypt.o file and include the linker option for the cryptography library.

3

The client should produce output for each message sent and received. The output must
clearly distinguish between success and failure.

Example output for success:

send request

receive challenge

send challenge response

receive ID SUCCESS

Example output for failure:

send request

receive challenge

send challenge response

receive ID FAILURE

The client must be well designed and handle errors gracefully. Well designed means that
your code adheres to best practices for efficiency, clarity, and software security. Graceful
means your programs must recover from the error and continue if possible, otherwise they
must display an informative message, cleanup resources, and terminate.

Your client must be developed in C using the BSD socket API on the CS server. The client
must compile and run on the CS server with cc (clang).

⋆ Error handling hint: Follow best practices when exiting a function that needs to release
resources on error. See this web page for details https://wiki.sei.cmu.edu/confluence/
display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+

when+using+and+releasing+resources (search the web for “SEI CERT C goto chain”).

Design sketch:

Create one design sketch (markdown file) for the client. Your design sketch must have the
following sections:

• Title: (Challenge Client)

• Program requirements: This section describes what the program must do to be con-
sidered a success

• Program inputs: This section describes the data that is input to the program. Be
specific about the type of data and acceptable values (range).

• Program outputs: This section describes the information produced by the program.
Be specific about the type of data and how it will be presented (formatting and inter-
pretation).

4

https://wiki.sei.cmu.edu/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://wiki.sei.cmu.edu/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://wiki.sei.cmu.edu/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources

• Test plan: This section describes how you will test your solution to determine if it is
correct. For each test case show the test input and expected output.

• Design overview: This section describes your solution in a human language (English,
flowchart, pseudocode). It should read as a step-by-step description of your solution.
Each step must be detailed, concise, and unambiguous. This narrative must relate
your design choices to the program requirements.

Due dates:

Wednesday 23rd before 11:59 p.m.
Design, Makefile, and skeleton code (client) commit, tag it “design”

Wednesday 30th before 11:59 p.m.
Completed client commit, tag it “client”

Use an annotated tag after your commit to tag the commit.

How to submit:

Create an empty git(1) repository in a folder named “program-7”. Commit and tag your files
as described above in “Due dates”. You may, and should, commit more frequently than the
required commit dates. You should build your client program in stages (skeleton, startup,
etc.) and commit the working version of each stage as you complete it.

Program evaluation:

Your program must conform to the UNA CS Code Style Guide linked on the class
web page and documented in style(9). Your program must compile without any compiler
warnings or errors. Code will be evaluated for correctness, efficiency, and style.

Helpful resources:

Command line arguments: https://www.geeksforgeeks.org/command-line-arguments-in-c-cpp/

--

man pages - memcpy(3), memcmp(3), malloc(3), free(3)

man pages - htonl(3), htobe64(3)

man pages - style(9), printf(3), egdb(1)

Additional resources:

https://beej.us/guide/bgnet/

https://csrc.nist.gov/Projects/ssdf

https://sourceware.org/gdb/current/onlinedocs/gdb.html

5

