
DevOps

BY: CHHAVI, CHHAVI; PEARSON, JACOB MICHEAL

What is DevOps?

• DevOps is the combination of cultural
philosophies, practices, and tools that
increases an organization’s ability to
deliver applications and services at high
velocity: evolving and improving products
at a faster pace than organizations using
traditional software development and
infrastructure management processes.
This speed enables organizations to
better serve their customers and
compete more effectively in the market.

DevOps Practices

DevOps practices focus on improving collaboration, communication, and

automation between development (Dev) and operations (Ops) teams to

increase the efficiency, reliability, and speed of software delivery.

DevOps Tools

• The DevOps model relies on effective
tooling to help teams rapidly and
reliably deploy and innovate for their
customers. These tools automate
manual tasks, help teams manage
complex environments at scale, and
keep engineers in control of the high
velocity that is enabled by DevOps.
AWS provides services that are
designed for DevOps and that are
built first for use with the AWS cloud.
These services help you use the
DevOps practices described above.

SOME DevOps TOOLS

• Git- Git is the commonly used tool in DevOps and the clear winner because of powerful features like
branching and merging, enabling seamless collaboration and version management in complex projects. It’s
a free, open-source version control system that is easy to get started with a minimal footprint and fast
performance.

• GitHub- GitHub is the default and most broadly used code repository management system. It provides an
easy way to manage distributed version control projects along with many more features and functionalities
such as feature requests, task management, CI/CD, wikis, and more to enable developers.

• AWS CloudFormation- AWS CloudFormation lets you model, provision, and manage AWS and third-
party resources with infrastructure as code principles. Provides native integrations with other AWS
services to build a robust infrastructure management pipeline. Here you can see a detailed CloudFormation
vs. Terraform comparison.

• AWS CDK- The AWS Cloud Development Kit(CDK) allows you to define cloud application resources and
infrastructure components using programming languages. It enables developers to use the same language
for building applications and infrastructure with the same language they are familiar with.

https://git-scm.com/
https://github.com/
https://aws.amazon.com/cloudformation/
https://spacelift.io/blog/terraform-vs-cloudformation
https://spacelift.io/blog/terraform-vs-cloudformation
https://aws.amazon.com/cdk/

DevOps Cultural Philosophy

• Transitioning to DevOps requires a change in culture and mindset. At its simplest,
DevOps is about removing the barriers between two traditionally siloed teams,
development and operations. In some organizations, there may not even be separate
development and operations teams; engineers may do both. With DevOps, the two
teams work together to optimize both the productivity of developers and the reliability
of operations. They strive to communicate frequently, increase efficiencies, and improve
the quality of services they provide to customers. They take full ownership for their
services, often beyond where their stated roles or titles have traditionally been scoped
by thinking about the end customer’s needs and how they can contribute to solving
those needs. Quality assurance and security teams may also become tightly integrated
with these teams. Organizations using a DevOps model, regardless of their
organizational structure, have teams that view the entire development and
infrastructure lifecycle as part of their responsibilities.

DevOps Lifecycle

• DevOps Lifecycle is the set of phases that
includes DevOps for taking part
in Development and Operation group
duties for quicker software program
delivery. DevOps follows positive
techniques that consist of code, building,
testing, releasing, deploying, operating,
displaying, and planning. DevOps
lifecycle follows a range of phases such as
non-stop development, non-stop
integration, non-stop testing, non-stop
monitoring, and non-stop feedback.

Continuous
Development

In Continuous Development code is
written in small, continuous bits rather
than all at once, Continuous Development
is important in DevOps because this
improves efficiency every time a piece of
code is created, it is tested, built, and
deployed into production. Continuous
Development raises the standard of the
code and streamlines the process of
repairing flaws, vulnerabilities, and
defects. It facilitates developers’ ability to
concentrate on creating high-quality code.

.

Continuous
Integration

Continuous Integration can be explained mainly in

4 stages in DevOps.

1. Getting the Source Code from SCM

2. Building the code

3. Code quality review

4. Storing the build artifacts

Continuous
Testing

• Any firm can deploy continuous
testing with the use of the agile and
DevOps methodologies. Depending
on our needs, we can perform
continuous testing using automation
testing tools such
as Testsigma, Selenium, LambdaTest, e
tc. With these tools, we can test our
code and prevent problems and code
smells, as well as test more quickly and
intelligently. With the aid of a
continuous integration platform like
Jenkins, the entire process can be
automated, which is another added
benefit.

Continuous
Deployment

• It is the process of automatically deploying an

application into the production environment when

it has completed testing and the build stages. Here,

we’ll automate everything from obtaining the

application’s source code to deploying it.

Continuous Monitoring

DevOps lifecycle is incomplete if there was no Continuous
Monitoring. Continuous Monitoring can be achieved with the help of
Prometheus and Grafana we can continuously monitor and can get
notified before anything goes wrong with the help of Prometheus
we can gather many performance measures, including CPU and
memory utilization, network traffic, application response times, error
rates, and others. Grafana makes it possible to visually represent
and keep track of data from time series, such as CPU and memory
utilization.

Continuous Feedback

• Once the application is released into the market the end users will use the
application and they will give us feedback about the performance of the application
and any glitches affecting the user experience after getting multiple feedback from
the end users’ the DevOps team will analyze the feedbacks given by end users and
they will reach out to the developer team tries to rectify the mistakes they are
performed in that piece of code by this we can reduce the errors or bugs that which
we are currently developing and can produce much more effective results for the
end users also we reduce any unnecessary steps to deploy the application.
Continuous Feedback can increase the performance of the application and reduce
bugs in the code making it smooth for end users to use the application.

Continuous Operations

• We will sustain the higher application uptime by implementing continuous

operation, which will assist us to cut down on the maintenance downtime

that will negatively impact end users’ experiences. More output, lower

manufacturing costs, and quality control are benefits of continuous

operations.

Importance of DevOps

1) Shorter Development Cycles, Faster Innovation- Streamlined workflows enable rapid
development, testing, and release, accelerating innovation and time-to-market.

2) Reduced Deployment Failures, Rollbacks, and Time to Recover- Automated testing and
early issue detection reduce deployment failures, making it easier to rollback and quickly
recover from issues.

3) Improved Communication and Collaboration- Cross-functional teams and shared goals
break down silos, fostering a collaborative environment

4) Increased Efficiencies- Automation of repetitive tasks and optimization of processes
improve productivity and reduce manual work, allowing teams to focus on high-value
tasks.

BENEFITS OF DevOps

1) Collaboration and Trust- Building a culture of shared responsibility, transparency,

and faster feedback is the foundation of every high-performing DevOps team.

2) Release faster and work smarter- Speed is everything. Teams that practice DevOps

release deliverables more frequently, with higher quality and stability.

3) Accelerate time-to-resolution- The team with the fastest feedback loop is the team

that thrives.

4) Better manage unplanned work- Unplanned work is a reality that every team

faces–a reality that most often impacts team productivity.

DevOps CHALLENGES

1) Challenges with Team Maturity and Competence- The level of maturity and competence a
software engineering team has with the Software Development Life Cycle is directly
related to their ability to be able to adapt to the DevOps transformation of these
processes.

2) Challenges with Monitoring the overall DevOps process- One of the most common
problems with DevOps is the challenge in holistically monitoring the entire process.
DevOps consists of several moving parts and each of these have different metrics to
judge their effectiveness.

3) CI/CD Performance Issues- A suboptimal implementation of the CI/CD pipeline leads
to recurring issues such as slow page loads for websites, delayed responses from servers,
and poor memory optimization that hampers the overall performance of the application.

CI/CD AND DevOps

CI/CD is a set of practices and tools that enable the automation of software

development, testing, and deployment. The goal of CI/CD is to improve the time-to-

release and reliability of software releases. They do so by detecting and fixing bugs

early in the development process.

DevOps is a software development methodology that emphasizes collaboration and

communication between developers and operations teams. DevOps culture promotes a

shared responsibility for the entire software development life cycle, from development

to production. This enables teams to work together more effectively, improving the

speed and quality of software development and deployment.

DevOps vs CI/CD

CI/CD DevOps

Involves the use of automated testing and

continuous integration

Involves the use of infrastructure as code, containerization, and automation of infrastructure

provisioning

Focuses on creating a rapid feedback loop

for developers

Focuses on creating a culture of collaboration and shared responsibility between development and

operations teams

Emphasizes the use of automation to

reduce human error and improve

consistency

Emphasizes the use of monitoring and logging to identify and resolve issues quickly

Tools include Jenkins, Travis CI, and

CircleCI

Tools include Ansible, Puppet, and Chef

Involves the use of version control systems

such as Git

Involves the use of agile methodologies and continuous testing

Focuses on streamlining and automating

the software release process
Focuses on improving communication and collaboration between development and operations

teams to achieve faster and more reliable software releases.

Is CI/CD and agile the same?

CI/CD and Agile are not the same, but they are often used together. Both

CI/CD and Agile are used to improve the software development process, but

they have different focuses. Agile focuses on delivering working software

incrementally, with regular feedback and collaboration, while CI/CD focuses

on automating the software build and deployment process. They can be used

together to improve the software development process by implementing

automation in the development process and delivering working software

incrementally and iteratively.

DevOps Practices

The practice of DevOps encourages smoother, continuous communication, collaboration, integration, visibility, and
transparency between application development teams (Dev) and their IT operations team (Ops) counterparts.

1) Collaboration- The key premise behind DevOps is collaboration. Development and operations teams coalesce into a
functional team that communicates, shares feedback and collaborates throughout the entire development and deployment
cycle.

2) Automation- An essential practice of DevOps is to automate as much of the software development lifecycle as possible.
This gives developers more time to write code and develop new features.

3) Continuous Improvement- It’s the practice of focusing on experimentation, minimizing waste, and optimizing for speed,
cost, and ease of delivery.

4) Customer-centric action- DevOps teams use short feedback loops with customers and end users to develop products and
services centered around user needs.

5) Create with the end in mind- This principle involves understanding the needs of customers and creating products or
services that solve real problems.

Some more DevOps Practices

1. Infrastructure as Code: Treating infrastructure configuration and provisioning as code makes it
possible to version, reuse, and automate infrastructure. This enables teams to replicate and scale
environments quickly and maintain consistency across development, testing, and production.

2. Monitoring and Logging: Continuous monitoring provides real-time visibility into applications and
infrastructure, helping teams detect, diagnose, and resolve issues quickly. Logging further helps
analyze system performance and user behaviors, facilitating continuous improvement.

3. Microservices Architecture: Designing applications as a suite of small, loosely coupled services
allows teams to develop, test, deploy, and scale each service independently, improving flexibility,
reliability, and resilience.

4. Version Control: Using version control for code and infrastructure configurations (often with Git)
helps manage changes, track history, collaborate effectively, and roll back to previous versions if
necessary.

DevOps Architecture

DevOps Architecture consists of the tools and workflows that allow for

efficient software development, deployment, and monitoring. With optimal

DevOps architecture the process of creating a program should be a smooth

process that works in tandem with the Agile framework to allow for minimal

interruptions at any point.

DevOps Architecture(Continued)

Creating a DevOps Architecture plan can seem very similar to creating a

CD/CI pipeline, just wider in scope. With DevOps, not only is the coding to

deployment pipeline considered, but also the team structure and planning.

DevOps integrates many of the topics we've covered in this course to make for

a more efficient development process. A complete DevOps Architecture plan

can make use of everything from CD/CI and Scrum, to Agile and Kanban

boards.

DevOps Infrastructure

DevOps Infrastructure involves making development as smooth as possible by

means of automation. This can cover everything from server management to

automated deployment and monitoring. While not easy or simple to institute,

DevOps infrastructure can allow for massively increased productivity since

developers will no longer need to waste time doing tasks that could be

automated.

DevOps Infrastructure Planning

DevOps Infrastructure is, as previously mentioned, difficult and expensive to

implement. That is why the planning stage of the creation of it can also be the

most important. During the planning stage the goals and requirements of the

infrastructure must be identified. Since the creation of the infrastructure can be

time and resource intensive, it is essential for the this to be done carefully and

with forethought.

DevOps Infrastructure Planning(cont.)

The planning of DevOps Infrastructure should also take into account the need

to scale in the future. This can be accomplished through the analysis of

infrastructure data, as well as through the use of tools such as Grafana. The

infrastructure should be built to the needs of the future throughout its lifecycle,

not just current requirements.

DevOps and Agile

DevOps was the natural continuation of Agile in many ways. While Agile

focuses on how a development team works together with stakeholders,

DevOps exists to remove any barriers for that team by focusing on

communication with the operations team as well. Essentially, a team within a

working DevOps architecture should be able to work on a portion of a project

from start to finish without needing to wait for oversight or review. This is

done through careful planning and communication between the teams

involved.

DevOps and Agile(cont.)

The Agile Manifesto explicitly prioritizes individuals and interactions, working
software, customer collaboration, and responding to change. These are clearly
the same priorities of DevOps but extended beyond the development process
and into the management of systems and running applications.

Agile centers the flow of software from ideation to code completion —
DevOps extends the focus to delivery and maintenance

Agile emphasizes iterative development and small batches — DevOps focuses
more on test and delivery automation

DevOps and CI

Continuous integration is an integral part of DevOps. CI allows for the

automated building and testing of code without the need for developer

interaction. DevOps' goal is to increase the efficiency of the development

process, and automated pipelines such as CI and CD can allow for an incredibly

large amount of time to be saved, especially on larger projects.

DevOps and CI(cont.)

Both CI/CD and DevOps focus on automating processes of code integration,

thereby speeding up the processes by which an idea (like a new feature, a

request for enhancement, or a bug fix) goes from development to deployment

in a production environment where it can provide value to the user.

DevSecOps

DevSecOps stands for development, security, and operations. It's an approach

to culture, automation, and platform design that integrates security as a shared

responsibility throughout the entire IT lifecycle. Effective DevOps ensures

rapid and frequent development cycles (sometimes weeks or days), but

outdated security practices can undo even the most efficient DevOps initiatives.

This is why it is important to consider security at every stage of the DevOps

process.

DevSecOps(cont.)

Whether you call it “DevOps” or “DevSecOps,” it has always been ideal to

include security as an integral part of the entire app life cycle. DevSecOps is

about built-in security, not security that functions as a perimeter around apps

and data. If security remains at the end of the development pipeline,

organizations adopting DevOps can find themselves back to the long

development cycles they were trying to avoid in the first place.

DevSecOps(cont.)

A good DevSecOps strategy is to determine risk tolerance and conduct a

risk/benefit analysis. What amount of security controls are necessary within a

given app? How important is speed to market for different apps? Automating

repeated tasks is key to DevSecOps, since running manual security checks in

the pipeline can be time intensive.

DevSecOps(cont.)

DevSecOps helps ensure that security is addressed as part of all DevOps practices by integrating security practices and

automatically generating security and compliance artifacts throughout the process. This is important for several

reasons, including:

• Reduces vulnerabilities, malicious code, and other security issues in released software without slowing down

code production and releases.

• Mitigates the potential impact of vulnerability exploitation throughout the application lifecycle , including

when the code is being developed and when the software is executing on dynamic hosting platforms.

• Addresses the root causes of vulnerabilities to prevent recurrences , such as strengthening test tools and

methodologies in the toolchain, and improving practices for developing code and operating hosting platforms.

• Reduces friction between the development, operation, and security teams in order to maintain the speed and

agility needed to support the organization’s mission while taking advantage of modern and innovative technology.

DevOps with cloud services

When DevOps teams work in the cloud, they enjoy easier access to scalable hardware resources

that can help build, test, and deploy new updates and offerings more quickly. The popularity of

cloud application delivery has led to widespread adoption of DevOps methods because they

are well suited to the rapid, ongoing processes that are a key benefit of cloud operations.

In a traditional application delivery environment, a finished application might be handed off to

IT operations for maintenance, with future upgrades managed on a predetermined schedule.

With cloud based projects however, this is often not the best course of action.

DevOps with cloud services

In cloud computing the application stack is likely to continue changing after its initial

deployment. That dynamism is a benefit because it helps the organization to continue

improving its products and services. Those rapid iterations also pose a challenge, and a

DevOps framework helps organizations to remain responsive and competitive in a rapidly

evolving marketplace. DevOps affinity for cloud services can easily be seen in the major

companies that utilize it. Amazon is able to release thousands of updates to its websites per day

with the help of DevOps, Netflix can release hundreds as well. This would be impossible

without DevOps automating as many steps as possible.

DevOps Related Tools: Jenkins

Jenkins is a tool that is used for automation. It is mainly an open-source server that allows all the

developers to build, test and deploy software. Jenkins facilitates the automation of several stages of the

software development lifecycle, including application development, testing, and deployment. Operating

within servlet containers like Apache Tomcat, the technology is server-based. Continuous delivery (CD)

and integration (CI) pipelines can be created and managed with Jenkins. The development, testing, and

deployment of software applications are automated using CI/CD pipelines.

DevOps Related Tools: Terraform

HashiCorp Terraform is an infrastructure as code tool that lets you define both cloud and on-premisis

resources in human-readable configuration files that you can version, reuse, and share. You can then use

a consistent workflow to provision and manage all of your infrastructure throughout its lifecycle.

Terraform can manage low-level components like compute, storage, and networking resources, as well

as high-level components like DNS entries and SaaS features.

DevOps Related Tools: Grafana

Grafana is a service that allows data and analytic visualization from nearly any source. It is

widely used with DevOps in order to help monitor automated processes and to better

understand the requirements of the DevOps project.

Works Cited

• https://aws.amazon.com/devops/what-is-devops/

• https://spacelift.io/blog/devops-tools

• https://www.geeksforgeeks.org/devops-lifecycle/

• https://www.atlassian.com/devops/what-is-devops#:~:text=higher%20quality%20output.-
,Automation,errors%20and%20increase%20team%20productivity

• https://shadow-soft.com/content/why-devops-important

• https://www.atlassian.com/devops/what-is-devops/benefits-of-devops

• https://testsigma.com/blog/devops-vs-cicd/

https://aws.amazon.com/devops/what-is-devops/
https://spacelift.io/blog/devops-tools
https://www.geeksforgeeks.org/devops-lifecycle/
https://www.atlassian.com/devops/what-is-devops
https://www.atlassian.com/devops/what-is-devops
https://shadow-soft.com/content/why-devops-important
https://www.atlassian.com/devops/what-is-devops/benefits-of-devops
https://testsigma.com/blog/devops-vs-cicd/

Works Cited

• https://instatus.com/blog/devops-infrastructure

• https://www.atlassian.com/devops/what-is-devops/agile-vs-devops

• https://www.redhat.com/en/topics/devops/what-is-ci-cd

• https://www.redhat.com/en/topics/devops/what-is-devsecops?cicd=32h281b

• https://csrc.nist.gov/projects/devsecops

• https://www.intel.com/content/www/us/en/cloud-computing/devops.html

• https://www.geeksforgeeks.org/what-is-jenkins/

• https://developer.hashicorp.com/terraform/intro

• https://grafana.com/

https://instatus.com/blog/devops-infrastructure
https://www.atlassian.com/devops/what-is-devops/agile-vs-devops
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-devsecops?cicd=32h281b
https://csrc.nist.gov/projects/devsecops
https://www.intel.com/content/www/us/en/cloud-computing/devops.html
https://www.geeksforgeeks.org/what-is-jenkins/
https://developer.hashicorp.com/terraform/intro
https://grafana.com/

	Slide 1: DevOps
	Slide 2: What is DevOps?
	Slide 3: DevOps Practices
	Slide 4: DevOps Tools
	Slide 5: SOME DevOps TOOLS
	Slide 6: DevOps Cultural Philosophy
	Slide 7: DevOps Lifecycle
	Slide 8: Continuous Development
	Slide 9: Continuous Integration
	Slide 10: Continuous Testing
	Slide 11: Continuous Deployment
	Slide 12: Continuous Monitoring
	Slide 13: Continuous Feedback
	Slide 14: Continuous Operations
	Slide 15: Importance of DevOps
	Slide 16: BENEFITS OF DevOps
	Slide 17: DevOps CHALLENGES
	Slide 18: CI/CD AND DevOps
	Slide 19: DevOps vs CI/CD
	Slide 20: Is CI/CD and agile the same?
	Slide 21: DevOps Practices
	Slide 22: Some more DevOps Practices
	Slide 23: DevOps Architecture
	Slide 24: DevOps Architecture(Continued)
	Slide 25: DevOps Infrastructure
	Slide 26: DevOps Infrastructure Planning
	Slide 27: DevOps Infrastructure Planning(cont.)
	Slide 28: DevOps and Agile
	Slide 29: DevOps and Agile(cont.)
	Slide 30: DevOps and CI
	Slide 31: DevOps and CI(cont.)
	Slide 32: DevSecOps
	Slide 33: DevSecOps(cont.)
	Slide 34: DevSecOps(cont.)
	Slide 35: DevSecOps(cont.)
	Slide 36: DevOps with cloud services
	Slide 37: DevOps with cloud services
	Slide 38: DevOps Related Tools: Jenkins
	Slide 39: DevOps Related Tools: Terraform
	Slide 40: DevOps Related Tools: Grafana
	Slide 41: Works Cited
	Slide 42: Works Cited

