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1. Introduction

Informally, a loop is a “nonassociative group”. More precisely, a loop is a set (Q, ·) with
a binary operation · such that (i) (Q, ·) is a quasigroup, that is, for each a, b ∈ Q, there exist
unique x, y ∈ Q with ax = b and ya = b, and (ii) there exists an identity element 1 ∈ Q such
that 1x = x1 = x for all x ∈ Q. Standard references for loop theory are [3, 25].

Loops (and quasigroups) are not just generalizations for the sake of generalization. They
appear quite naturally in many parts of mathematics. Historically, loop theory is most closely
connected with combinatorics, particularly latin squares. Indeed, normalized latin squares
are precisely the multiplication tables of finite loops. Loops are also the coordinatizing
structures for 3-nets, which are close relatives of projective planes.

Loops arise naturally in physics, particularly in special relativity. The set {v ∈ R3 | |v| <
c} of all relativistic velocity vectors forms a loop where the operation is Einstein’s velocity
addition formula. This is an example of a Bruck loop [26]. Another example of a Bruck loop
is given on the set H+(n,C) of all n × n positive definite Hermitian matrices by the polar
decomposition. Given two such matrices A and B, let AB = PU be the polar decomposition
where P is positive definite Hermitian and U is unitary. Defining A ◦B = P gives H+(n,C)
the structure of a Bruck loop [17].

An even better known class of loops is typified by the sphere S7 under octonion multipli-
cation, or more generally, the set of all nonzero octonions under multiplication. Even more
generally, one can take the set of all invertible elements in an alternative ring. All of these
loops are examples of Moufang loops, about which more is known then perhaps any other
type of loop. Moufang loops are closely related to groups with triality (and in fact, these
notions are essentially the same). The deepest questions in the theory of Moufang loops are
often resolved by formulating them in group theoretic terms and using the corresponding
powerful tools of group theory. For instance, all finite simple Moufang loops are classified
because finite simple groups with triality are classified [21].

2. Background

In a loop Q, the left and right translations by x ∈ Q are defined by yLx = xy and yRx = yx
respectively. We have the following sets and associated groups of interest:

• left and right translation by x yLx = xy yRx = yx,
• left section of Q LQ = {Lx | x ∈ Q},
• right section of Q RQ = {Rx | x ∈ Q},
• multiplication group of Q Mlt(Q) = 〈LQ, RQ〉,
• inner mapping group of Q Inn(Q) = {θ ∈ Mlt(Q) | 1θ = 1}.
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Moufang loops, which are easily the most studied class of loops, are defined by the identity
(xy)(zx) = x((yz)x) (or other identities equivalent to this). A loop Q is automorphic if
every inner mapping of Q is an automorphism of Q (i.e. Inn(Q)≤ Aut(Q)). The variety
of automorphic loops include groups and commutative Moufang loops. Automorphic loops
were first studied by Bruck and Paige [4].

My current research focuses on two main ideas: studying loops that generalize Moufang
loops and commutative automorphic loops; and constructions for different varieties of loops.

3. Research Summary

3.1. Γ-Loops. Let G be a uniquely 2-divisible group, that is, a group in which the map
x 7→ x2 is a bijection. On G we define two new binary operations as follows:

x⊕ y = (xy2x)1/2 ,(3.1)

x ◦ y = xy[y, x]1/2 .(3.2)

Here a1/2 denotes the unique b ∈ Q satisfying b2 = a and [y, x] = y−1x−1yx. Then it turns
out that both (G,⊕) and (G, ◦) are loops with neutral element 1. The loop (G,⊕) is well
known, with the basic ideas dating back to Bruck [3] and Glauberman [7]. (G,⊕) is an
example of a Bruck loop, that is, it satisfies the following identities

(x⊕ (y ⊕ x))⊕ z = x⊕ (y ⊕ (x⊕ z)),(Bol)

(x⊕ y)−1 = x−1 ⊕ y−1.(AIP)

Bruck loops are power-associative, which informally means that integer powers of elements
can be defined unambiguously. Further, powers in G and powers in (G,⊕) coincide.

(G, ◦) turns out to live in a variety of loops which we will call Γ-loops,

Definition 3.1. A loop (Q, ·) is a Γ-loop if the following hold

(Γ1) Q is commutative.
(Γ2) Q has the automorphic inverse property (AIP): ∀x, y ∈ Q, (xy)−1 = x−1y−1.
(Γ3) ∀x ∈ Q, LxLx−1 = Lx−1Lx.
(Γ4) ∀x, y ∈ Q, PxPyPx = PyPx where Px = RxL

−1
x−1 = LxL

−1
x−1.

Γ-loops include as special cases two classes of loops: commutative semiautomorphic IP loops
[20, 10] (see §3.2) and commutative automorphic loops [14, 13, 15, 5]. Our first goal was
showing Γ-loops are power-associative:

Theorem 3.2. Γ-loops are power associative.

As a consequence, powers of elements in G, (G, ◦) and (G,⊕) all coincide.
Jedlička, Kinyon and Vojtěchovský [14] showed that starting with a uniquely 2-divisible

commutative automorphic loop (Q, ◦), one can define a Bruck loop (Q,⊕′) on the same
underlying set Q by

(3.3) x⊕′ y = (x−1\◦(y2 ◦ x))1/2 .

Here a\◦b is the unique solution c to a ◦ c = b. This results also extends to Γ-loops [9]. This
gives us a functor B : ΓLp

1/2
 BrLp

1/2
from the category ΓLp

1/2
of uniquely 2-divisible

Γ-loops to the category BrLp
1/2

of uniquely 2-divisible Bruck loops. Our second main result
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is the construction of an inverse functor G : BrLp
1/2
 ΓLp

1/2
, that is, G ◦ B is the identity

functor on ΓLp
1/2

and B ◦ G is the identity functor on BrLp
1/2

.

Theorem 3.3. ΓLp
1/2

and BrLp
1/2

are categorically isomorphic.

Finite Bruck loops of odd order are known to have many remarkable properties, all found
by Glauberman [7, 8]. For instance, they satisfy Lagrange’s Theorem, the Odd Order Theo-
rem, the Sylow and Hall Existence Theorems and finite Bruck p-loops (p odd) are centrally
nilpotent. Using the isomorphism of the categories ΓLp

1/2
and BrLp

1/2
, we immediately get

the same results for Γ-loops of odd order.
Originally, our motivation was to answer an open problem of Jedlička, Kinyon and

Vojtěchovský [14], dealing with the existence of Sylow and Hall subgroups in finite com-
mutative automorphic loops. The authors showed that a solution would follow from an
answer in the odd order case [14]. Using this and the new isomorphism, the Sylow and Hall
Theorems for Γ-loops of odd order are answered in the affirmative, in a more general way
than was originally posed. Further, the proofs of the Odd Order Theorem and the nontriv-
iality of the center of finite Γ-p-loops (p odd) are much simpler than the proofs in [14] and
[15] for commutative automorphic loops.

3.2. Semiautomorphic Inverse Property Loops. In general, the inner mappings of a
nonassociative loop are not automorphisms of the loop (except, by definition, in the class of
automorphic loops). However, in some of the various classes of loops which are commonly
studied, the action of the inner mapping group still preserves some of the loop structure.
For example, every inner mapping θ of a Moufang loop Q is a semiautomorphism, that is,
1θ = 1 and

(xyx)θ = xθ · yθ · xθ
for all x, y ∈ Q. (Since Moufang loops are flexible, that is, (xy)x = x(yx) for all x, y, we
may write xyx unambiguously.)

Steiner loops, which arise from Steiner triple systems, are loops satisfying the identities
xy = yx, x(yx) = y. Every inner mapping θ of a Steiner loop is also (trivially!) a semiauto-
morphism: (xyx)θ = yθ = xθ · yθ · xθ.

We focused on this property of inner mappings to study a class of loops generalizing both
Moufang loops and Steiner loops.

Definition 3.4. A loop Q is said to be a semiautomorphic, inverse property loop (or just
semiautomorphic IP loop) if

(1) Q is flexible, that is, (xy)x = x(yx) for all x, y ∈ Q;
(2) Q has the inverse property (IP), that is, for each x ∈ Q, there exists x−1 ∈ Q such

that x−1(xy) = y and (yx)x−1 = y for all y ∈ Q:
(3) Every inner mapping is a semiautomorphism, that is, for each θ ∈ Inn(Q), xθ · yθ ·

xθ = (x · y · x)θ for all x, y ∈ Q.

If θ is a semiautomorphism of a flexible loop Q, then for all x ∈ Q, xθ = (xx−1x)θ =
xθ · x−1θ · xθ, and cancelling gives 1 = xθ · x−1θ. Thus if we define the inversion map
J : Q→ Q by xJ = x−1, we have θJ = θ for any semiautomorphism.

It follows that any semiautomorphic IP loop is an example of a variety of loops which
have already appeared in the literature called “RIF loops” (RIF = Respects Inverses and
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Flexible). General RIF loops were introduced in [18] and commutative RIF loops were
studied in [20]. Recalling that a loop is diassociative if any subloop generated by at most 2
elements is associative, we have the following, which follows from the main result of [18].

Proposition 3.5. ([18]). Every semiautomorphic IP loop is diassociative.

Our first main result, is the converse of our observation that every semiautomorphic IP
loop is a RIF loop. We state this as the following characterization:

Theorem 3.6. Let Q be a loop. The following are equivalent.

(1) Q is a semiautomorphic IP loop;
(2) Q is a flexible IP loop such that θJ = θ for all θ ∈ Inn(Q).

The commutant of a loop Q is the set C(Q) = {a ∈ Q | ax = xa ∀x ∈ Q}. In general, the
commutant of a loop is not a subloop, although it is known to be so in certain cases, such
as for Moufang loops.

Theorem 3.7. The commutant of a semiautomorphic IP loop is a subloop.

In proving Theorem 3.7, we show that for any a ∈ C(Q), a2 is a Moufang element, that
is, a2 · xy · a2 = a2x · ya2 for all x, y. This immediately gives us that for each a ∈ C(Q),
a6 ∈ Z(Q), where Z(Q) denotes the center of Q. This simultaneously generalizes two results:
that in a Moufang loop, the cube of any commutant element is central [3], and that in a
commutative semiautomorphic IP loop, the sixth power of any element is central [20].

We have two constructions for creating semiautomorphic loops. There is a well-known
doubling construction of Chein which builds nonassociative Moufang loops from nonabelian
groups. The construction itself makes sense even when one starts with a loop instead of a
group. It turns out that if one applies the construction to a semiautomorphic IP loop, the
result is another semiautomorphic IP loop [10]. In particular, this allows us to construct
nonMoufang, nonSteiner, semiautomorphic IP loops by starting with nonassociative Moufang
loops.

Our second construction is based on another doubling technique of de Barros and Juri-
aans. It was already noted (without human proof) that applying the de Barros-Juriaans
construction to a group gives what we are now calling a semiautomorphic IP loop. Again we
have that just as with the Chein construction, starting with a semiautomorphic IP loop in
the de Barros-Juriaans construction yields another semiautomorphic IP loop [10]. Also, if we
start with a semiautomorphic IP loop, apply the de Barros-Jurrians construction and then
apply the Chein construction to the result, we end up with the same loop up to isomorphism
as if we had applied the Chein construction twice [10].

3.3. Simple Right Conjugacy Closed Loops. A loop Q is a right conjugacy closed loop,
or RCC loop, if R−1x RyRx ∈ RQ, or equivalently (xy)z = (xz) · z\(yz) for all x, y, z ∈ Q.
Most of the literature on the variety of conjugacy closed loops deals with left conjugacy
closed loops, but given an LCC loop Q, (Q, ◦) is a RCC loop with x ◦ y = yx. General
theory of LCC loops can be found in [2, 22, 6]. However, there is little discussion of simple
LCC loops.

A subloop N of a loop Q is normal if it is invariant under Inn(Q). Q is simple if the
only normal subloops are the trivial subloops Q and {1}. As with groups, simple loops in a
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particular variety form the basic building blocks of the variety. Using general linear groups,
we construct simple RCC loops.

First, let f(x) = x2− rx+ s be irreducible in Fq[x]. For each b ∈ Fq, define Mf(0,b) = ( b 0
0 b )

and for a 6= 0, Mf(a,b) =
(
r−b s−br−b2

−a

a b

)
. Then,

Lemma 3.8. Let f(x) = x2−rx+s be irreducible in Fq[x]. The conjugacy class of all matrices
in GL(2, q) with characteristic polynomial f(x) is precisely the set {Mf(a,b) | a, b ∈ Fq}.

Theorem 3.9. Let f(x) = x2 − rx + s be irreducible in Fq[x]. Let Q = F2
q, written as a

set of row vectors. Define a binary operation ◦f on Q by [a, b] ◦f [c, d] = [a, b]Mf(c,d). Then
(Q, ◦f ) is an RCC loop.

Moreover,

Theorem 3.10. If the trace of Mf(a,b) 6= 0 for every Mf(a,b), then (Q, ◦f ) is simple. Else,
(Q, ◦f )/Z(Q, ◦f ) is simple.

4. Current & Future Research

4.1. Automorphic loops. Recently, automorphic loops were shown to satisfy the Odd
Order Theorem, that is, every finite automorphic loop of odd order is solvable; Cauchy’s
Theorem is known to hold; and automorphic loops satisfy the elementwise Lagrange Theo-
rem, that is, the order of an element divides the order of the loop [19]. There are still several
basic open problems (all answered in the commutative case, §3.1):

Problem 4.1. Let Q be a finite automorphic loop.

(i) Let S ≤ Q. Then does |S| divide |Q|?
(ii) For each prime p dividing |Q|, does Q have an element of order p?

(iii) For each prime p dividing |Q|, does Q have a Sylow p-subgroup?
(iv) If Q is solvable and if π is a set of primes, does Q have a Hall π-subloop?

However, the main open problem in the theory of automorphic loops deals with simple
automorphic loops.

Problem 4.2. Does there exist a nonassociative finite simple automorphic loop?

In the commutative case, it has been shown that no finite simple nonassociative com-
mutative automorphic loop exists [11]. The proof used connections between commutative
automorphic loops and both Bruck loops and Lie algebras.

In general, using a computational approach, we know there is no nonassociative simple
automorphic loop of order less than 2500 [16]. We can, however, reduce this problem to a
purely group theoretical question.

From the work of Niemenmma and Kepka, [23], we can state explicitly when a group G is
the multiplication group of a loop Q.

Theorem 4.3. ([23]). A group G is the multiplication group of a loop if and only if there is
a subgroup H and transversals R,L of H such that

(i) G = 〈R,L〉,
(ii) H is corefree, that is,

⋂
g∈GH

g = 1,

(iii) [R−1, L−1] ≤ H.
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We can specialize this to automorphic loops as follows:

Theorem 4.4. ([16]). In the setting of Theorem 4.3, the corresponding loop will be auto-
morphic if and only if Rh = R and Lh = L for all h ∈ H.

Finally, Albert show that if a loop Q is simple if and only if its multiplication group
Mlt(Q) is primitive on Q [1]. Hence, we can restate Problem 4.2 as follows:

Problem 4.5. Is there a permutation group G and two subsets R,L ⊆ G containing 1G such
that:

(a) G is primitive,
(b) R and L are right and left transversals to H = G1 in G,
(c) G = 〈R,L〉,
(d) [R−1, L−1] ≤ H,
(e) Rh = R and Lh = L for every h ∈ H?

Since our question depends on primitive permutation groups, can make use of the O’Nan-
Scott Theorem on classifying primitive permutation groups. Recalling the socle Soc(G) of
a group G, we can divide our study of finite primitive groups into two cases, depending on
whether the Soc(G) is regular or not.

Theorem 4.6. ([19]). Let Q be a finite simple nonassocitive automorphic loop. Then the
Soc(Mlt(Q)) is not regular.

By the O’Nan-Scott Theorem, it follows that Mlt(Q) is of product type, of diagonal type
or of almost simple type.

4.2. Metabelian groups, commutative automorphic loops and Γ-loops. Returning
to (G, ◦) in §3.1, if G is nilpotent of class at most 2, then (G, ◦) is an abelian group. In
this case, the passage from G to (G, ◦) is called the “Baer trick” [12]. Since commutative
automorphic loops can be seen as one generalization of abelian groups, a natural question
to ask is when (G, ◦) is a commutative automorphic loop? If G is 2-Engel, then (G, ◦) is
Moufang (and in fact coincides with (G,⊕)), and if G is nilpotent of class at most 3, then
(G, ◦) is a Γ-loop of nilpotent class 2. Summarizing:

Group Property Γ-Loop Description Proved
nilpotent class 2 abelian group X
2−Engel commutative Moufang loop X
nilpotent class 3 Γ-loop of nilpotent class 2 X
metabelian commutative automorphic loop

When G is metabelian, (G, ◦) is conjectured to be a commutative automorphic loop. Our
only examples of a group G with (G, ◦) not a commutative automorphic loop occur when G
is nonmetabelian.

Problem 4.7. Let G be a uniquely 2-divisible metabelian group. Is (G, ◦) a commutative
automorphic loop?

Moreover, using the above remarks, we can ask:
6



Problem 4.8. Let (Q, ◦) be a commutative automorphic loop and let (Q,⊕) be the corre-
sponding Bruck loop. Is the left multiplication group of (Q,⊕) metabelian?

We have two main approaches to this problem. Since our early results are purely based
in commutator calculus, we wish to study nilpotent and metabelian groups in depth. Since
minimal properties of 2-Engel groups show (G, ◦) is Moufang, it is natural to ask what
metabelian properties prove that (G, ◦) is a commutative automorphic loop? Secondly, in
the 2-Engel case, (G, ◦) = (G,⊕), and (G,⊕) has a geometrical interpretation. Perhaps our
understanding of (G, ◦) would be deeper if we can find a reasonable geometric interpretation
of it.

4.3. Simple Semiautomorphic IP loops. Paige gave a construction for simple Moufang
loops using a field F, R, the set of matrices ( a αβ b ) where α, β are 3-dimensional coordinate
vectors over F, and Zorn’s multiplication

( a αβ b ) ? ( c γδ d ) = ( ac+α◦δ aγ+αd−β×δ
βc+bδ+α×γ β◦γ+bd )

with α ◦ β, α× β are scalar and vector products. Then

Theorem 4.9. ([24]). (R, ?) is a Moufang loop. Moreover, if R is restricted to matrices
where ab− α ◦ β = 1, then (R, ?)/Z(R, ?) is a simple Moufang loop.

Liebeck was able to show that all finite simple Moufang loops have the form above [21].
From §3.2, starting with a nonabelian group, we can construct a Moufang loop and a semiau-
tomorphic IP loop. Moreover, much of the structure in Moufang loops continues in semiau-
tomorphic IP loops. Hence, it is natural to ask if we can construct simple semiautomorphic
IP loops in a manner similar as Paige did. That is,

Problem 4.10. What alterations to (R, ?) can be made to have (R, ?)/Z(R, ?) be a simple,
non Moufang, semiautomorphic IP loop?
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